




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
云南省通海三中2025屆數(shù)學(xué)高二上期末綜合測試模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知橢圓,則它的短軸長為()A.2 B.4C.6 D.82.已知直線經(jīng)過點,且是的方向向量,則點到的距離為()A. B.C. D.3.拋物線上的一點到其焦點的距離等于()A. B.C. D.4.已知、分別是雙曲線的左、右焦點,為一條漸近線上的一點,且,則的面積為()A. B.C. D.15.【2018江西撫州市高三八校聯(lián)考】已知雙曲線(,)與拋物線有相同的焦點,且雙曲線的一條漸近線與拋物線的準線交于點,則雙曲線的離心率為()A. B.C. D.6.已知空間向量,,則()A. B.19C.17 D.7.若函數(shù),滿足且,則()A.1 B.2C.3 D.48.已知函數(shù),其中e是自然數(shù)對數(shù)的底數(shù),若,則實數(shù)a的取值范圍是A. B.C. D.9.已知命題,,則A., B.,C., D.,10.設(shè)變量,滿足約束條件,則目標函數(shù)的最大值為()A. B.0C.6 D.811.已知數(shù)列是各項均為正數(shù)的等比數(shù)列,若,則公比()A. B.2C.2或 D.412.蟋蟀鳴叫可以說是大自然優(yōu)美、和諧的音樂,殊不知蟋蟀鳴叫的頻率(每分鐘鳴叫的次數(shù))與氣溫(單位:℃)存在著較強的線性相關(guān)關(guān)系.某地觀測人員根據(jù)如表的觀測數(shù)據(jù),建立了關(guān)于的線性回歸方程,則下列說法不正確的是()(次數(shù)/分鐘)2030405060(℃)2527.52932.536A.的值是20B.變量,呈正相關(guān)關(guān)系C.若的值增加1,則的值約增加0.25D.當(dāng)蟋蟀52次/分鳴叫時,該地當(dāng)時的氣溫預(yù)報值為33.5℃二、填空題:本題共4小題,每小題5分,共20分。13.等比數(shù)列的前n項和,則的通項公式為___________.14.直線被圓所截得的弦中,最短弦所在直線的一般方程是__________15.如圖,設(shè)正方形ABCD與正方形ABEF的邊長都為1,若平面ABCD,則異面直線AC與BF所成角的大小為______16.若雙曲線的漸近線方程為,則該雙曲線的離心率為___________;若,則雙曲線的右焦點到漸近線的距離為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標系中,設(shè)橢圓()的離心率是e,定義直線為橢圓的“類準線”,已知橢圓C的“類準線”方程為,長軸長為8.(1)求橢圓C的標準方程;(2)O為坐標原點,A為橢圓C的右頂點,直線l交橢圓C于E,F(xiàn)兩不同點(點E,F(xiàn)與點A不重合),且滿足,若點P滿足,求直線的斜率的取值范圍.18.(12分)如圖,在長方體中,,點E在棱上運動(1)證明:;(2)當(dāng)E為棱的中點時,求直線與平面所成角的正弦值;(3)等于何值時,二面角的大小為?19.(12分)已知函數(shù)(1)若,求曲線在處的切線方程(2)討論函數(shù)的單調(diào)性20.(12分)已知函數(shù).其中e為然對數(shù)的底數(shù)(1)若,求函數(shù)的單調(diào)區(qū)間;(2)若,討論函數(shù)零點個數(shù)21.(12分)已知橢圓的上、下頂點分別為A,B,離心率為,橢圓C上的點與其右焦點F的最短距離為.(1)求橢圓C的標準方程;(2)若直線與橢圓C交于P,Q兩點,直線PA與QB的斜率分別為,,且,那么直線l是否過定點,若過定點,求出該定點坐標;否則,請說明理由.22.(10分)如圖1是直角梯形,以為折痕將折起,使點C到達的位置,且平面與平面垂直,如圖2(1)求異面直線與所成角的余弦值;(2)在棱上是否存在點P,使平面與平面的夾角為?若存在,則求三棱錐的體積,若不存在,則說明理由
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】根據(jù)橢圓短軸長的定義進行求解即可.【詳解】由橢圓的標準方程可知:,所以該橢圓的短軸長為,故選:B2、B【解析】求出,根據(jù)點到直線的距離的向量公式進行求解.【詳解】因為,為的一個方向向量,所以點到直線的距離.故選:B3、C【解析】由點的坐標求得參數(shù),再由焦半徑公式得結(jié)論【詳解】由題意,解得,所以,故選:C4、A【解析】先表示出漸近線方程,設(shè)出點坐標,利用,解出點坐標,再按照面積公式求解即可.【詳解】由題意知,雙曲線漸近線方程為,不妨設(shè)在上,設(shè),由得,解得,的面積為.故選:A.5、C【解析】由題意可知,拋物線的焦點坐標為,準線方程為,由在拋物線的準線上,則,則,則焦點坐標為,所以,則,解得,雙曲線的漸近線方程是,將代入漸近線的方程,即,則雙曲線的離心率為,故選C.6、D【解析】先求出的坐標,再求出其?!驹斀狻恳驗?,,所以,故,故選:D.7、C【解析】先取,得與之間的關(guān)系,然后根據(jù)導(dǎo)數(shù)的運算直接求導(dǎo),代值可得.【詳解】取,則有,即,又因為所以,所以,所以.故選:C8、B【解析】利用函數(shù)的奇偶性將函數(shù)轉(zhuǎn)化為f(M)≤f(N)的形式,再利用單調(diào)性脫去對應(yīng)法則f,轉(zhuǎn)化為一般的二次不等式求解即可【詳解】由于,,則f(﹣x)=﹣x3+e﹣x﹣ex=﹣f(x),故函數(shù)f(x)為奇函數(shù)故原不等式f(a﹣1)+f(2a2)≤0,可轉(zhuǎn)化為f(2a2)≤﹣f(a﹣1)=f(1﹣a),即f(2a2)≤f(1﹣a);又f'(x)=3x2﹣cosx+ex+e﹣x,由于ex+e﹣x≥2,故ex+e﹣x﹣cosx>0,所以f'(x)=3x2﹣cosx+ex+e﹣x≥0恒成立,故函數(shù)f(x)單調(diào)遞增,則由f(2a2)≤f(1﹣a)可得,2a2≤1﹣a,即2a2+a﹣1≤0,解得,故選B【點睛】本題考查了函數(shù)的奇偶性和單調(diào)性的判定及應(yīng)用,考查了不等式的解法,屬于中檔題9、A【解析】根據(jù)全稱命題與特稱命題互為否定的關(guān)系,即可求解,得到答案【詳解】由題意,根據(jù)全稱命題與特稱命題的關(guān)系,可得命題,,則,,故選A【點睛】本題主要考查了含有一個量詞的否定,其中解答中熟記全稱命題與特稱性命題的關(guān)系是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題10、C【解析】畫出可行域,利用幾何意義求出目標函數(shù)最大值.【詳解】畫出圖形,如圖所示:陰影部分即為可行域,當(dāng)目標函數(shù)經(jīng)過點時,目標函數(shù)取得最大值.故選:C11、B【解析】由兩式相除即可求公比.【詳解】設(shè)等比數(shù)列的公比為q,∵其各項均為正數(shù),故q>0,∵,∴,又∵,∴=4,則q=2.故選:B.12、D【解析】根據(jù)樣本中心過經(jīng)過線性回歸方程、正相關(guān)的性質(zhì)和線性回歸方程的意義進行判斷即可.【詳解】由題意,得,,則,故A正確;由線性回歸方程可知,,變量,呈正相關(guān)關(guān)系,故B正確;若的值增加1,則的值約增加0.25,故C正確;當(dāng)時,,故D錯誤.故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】利用的關(guān)系,結(jié)合是等比數(shù)列,即可求得結(jié)果.【詳解】因為,故當(dāng)時,,則,又當(dāng)時,,因為是等比數(shù)列,故也滿足,即,故,此時滿足,則.故答案為:.14、【解析】先求出直線所過的定點,當(dāng)該定點為弦的中點時弦長最短,利用點斜式求出直線方程,整理成一般式即可.【詳解】即,令,解得即直線過定點圓的圓心為,半徑為,最短弦所在直線的方程為整理得最短弦所在直線的一般方程是故答案為:.15、##【解析】建立空間直角坐標系,利用空間向量法求出異面直線所成角;【詳解】解:如圖建立空間直角坐標系,則、、、,所以,,設(shè)直線與所成角為,則,因為,所以;故答案為:16、①.②.3【解析】由漸近線方程知,結(jié)合雙曲線參數(shù)關(guān)系及離心率的定義求雙曲線的離心率,由已知可得右焦點為,應(yīng)用點線距離公式求距離.【詳解】由題設(shè),,則,當(dāng)時,,則雙曲線為,故右焦點為,所以右焦點到漸近線的距離為.故答案為:,3.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)由題意列關(guān)于,,的方程,聯(lián)立方程組求得,,,則橢圓方程可求;(2)分直線軸與直線l不垂直于x軸兩種情況討論,當(dāng)直線l不垂直于x軸時,設(shè),,直線l:(,),聯(lián)立直線方程與橢圓方程,消元由,得到,再列出韋達定理,由則,解得,再由,求出的坐標,則,再利用基本不等式求出取值范圍;【詳解】解:(1)由題意得:,,又,聯(lián)立以上可得:,,,橢圓C的方程為.(2)由(1)得,當(dāng)直線軸時,又,聯(lián)立得,解得或,所以,此時,直線的斜率為0.當(dāng)直線l不垂直于x軸時,設(shè),,直線l:(,),聯(lián)立,整理得,依題意,即(*)且,.又,,,即,且t滿足(*),,,故直線的斜率,當(dāng)時,,當(dāng)且僅當(dāng),即時取等號,此時;當(dāng)時,,當(dāng)且僅當(dāng),即時取等號,此時;綜上,直線的斜率的取值范圍為.【點睛】本題考查利用待定系數(shù)法求橢圓方程,直線與橢圓的綜合應(yīng)用,屬于難題.18、(1)證明見解析;(2);(3).【解析】(1)連接、,長方體、線面垂直的性質(zhì)有、,再根據(jù)線面垂直的判定、性質(zhì)即可證結(jié)論.(2)連接,由已知條件及勾股定理可得、,即可求、,等體積法求到面的距離,又直線與面所成角即為與面所成角,即可求線面角的正弦值.(3)由題設(shè)易知二面角為,過作于,連接,可得二面角平面角為,令,由長方體的性質(zhì)及勾股定理構(gòu)造方程求即可.【小問1詳解】由題設(shè),連接、,又長方體中,∴為正方形,即,又面,面,即,∵,面,∴面,而面,即.【小問2詳解】連接,由E為棱的中點,則,∴,又,故,∴,又,,故,則,由,若到面的距離為,又,,∴,可得,又,∴直線與面所成角即為與面所成角為,故.【小問3詳解】二面角大小為,即二面角為,由長方體性質(zhì)知:面,面,則,過作于,連接,又,∴面,則二面角平面角為,∴,令,則,故,而,,∴,∴,整理得,解得.∴時,二面角的大小為.19、(1)(2)答案見解析【解析】(1)根據(jù)導(dǎo)數(shù)的幾何意義可求得切線斜率,結(jié)合切點可得切線方程;(2)求導(dǎo)后,分別在、和的情況下,根據(jù)的正負可得的單調(diào)性.【小問1詳解】當(dāng)時,,,,又,在處的切線方程為:,即;【小問2詳解】,令,解得:,;當(dāng)時,,在上單調(diào)遞增;當(dāng)時,若或,則;若,則;在和上單調(diào)遞增,在上單調(diào)遞減;當(dāng)時,若或,則;若,則;在和上單調(diào)遞增,在上單調(diào)遞減;綜上所述:當(dāng)時,在上單調(diào)遞增;當(dāng)時,在和上單調(diào)遞增,在上單調(diào)遞減;當(dāng)時,在和上單調(diào)遞增,在上單調(diào)遞減.20、(1)單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為和;(2)當(dāng)時,無零點;當(dāng)時,有1個零點;當(dāng)時,有2個零點.【解析】(1)求導(dǎo),令導(dǎo)數(shù)大于零求增區(qū)間,令導(dǎo)數(shù)小于零求減區(qū)間;(2)求導(dǎo)數(shù),分、、a>2討論函數(shù)f(x)單調(diào)性和零點即可.【小問1詳解】當(dāng)時,,易知定義域為R,,當(dāng)時,;當(dāng)或時,故的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為和;【小問2詳解】當(dāng)時,x正0負0正單增極大值單減極小值單增當(dāng)時,恒成立,∴;當(dāng)時,①當(dāng)時,,∴無零點;②當(dāng)時,,∴有1個零點;③當(dāng)時,,又當(dāng)時,單調(diào)遞增,,∴有2個零點;綜上所述:當(dāng)時,無零點;當(dāng)時,有1個零點;當(dāng)時,有2個零點【點睛】結(jié)論點睛:(1)考查導(dǎo)數(shù)的幾何意義,往往與解析幾何、微積分相聯(lián)系.(2)利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間,判斷單調(diào)性;已知單調(diào)性,求參數(shù).(3)利用導(dǎo)數(shù)求函數(shù)的最值(極值),解決生活中的優(yōu)化問題.(4)考查數(shù)形結(jié)合思想的應(yīng)用21、(1)(2)恒過點【解析】(1)設(shè)為橢圓上的點,根據(jù)橢圓的性質(zhì)得到,再根據(jù)的取值范圍,得到,再根據(jù)離心率求出、,最后根據(jù),求出,即可得解;(2)設(shè)、,表示出、,聯(lián)立直線與橢圓方程,消元列出韋達定理,由,即可得到,再根據(jù),即可得到,從而得到,再將、代入計算可得;【小問1詳解】解:設(shè)為橢圓上的點,為橢圓的右焦點,所以,因為,所以,又,所以、,因為,所以,所以橢圓方程為;【小問2詳解】解:設(shè)、,依題意可得、,所以、,聯(lián)立得,則即,所以、,因為,所以,即,由得,即,所以,即,,整理得,所以,即,即,解得或,當(dāng)時直線過點,故舍去,所以,則直線恒過點;22、(1)(2)存在,靠近點D的三等分點
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 采購管理專業(yè)課程
- 幼兒入園協(xié)議
- 資產(chǎn)抵押擔(dān)保協(xié)議書范例
- 風(fēng)電場檢查合同范本
- 現(xiàn)金融資合同范本
- 個人車輛借款合同范本
- 攝影助理雇傭合同范本
- 潤滑油基礎(chǔ)知識培訓(xùn)
- 美妝行業(yè)網(wǎng)絡(luò)營銷報告
- 銀行遠程授權(quán)培訓(xùn)
- SIMTRADE外貿(mào)模擬實訓(xùn)報告
- 2022公務(wù)員錄用體檢操作手冊(試行)
- 銀行從業(yè)公司信貸
- 賣石斛怎么給顧客說:石斛賣的方法
- 加快構(gòu)建新發(fā)展格局是推動高質(zhì)量發(fā)展的戰(zhàn)略基點PPT高質(zhì)量發(fā)展是全面建設(shè)社會主義現(xiàn)代化國家的首要任務(wù)PPT課件(帶內(nèi)容)
- 門靜脈高壓癥
- 國家電網(wǎng)有限公司電網(wǎng)數(shù)字化項目工作量度量規(guī)范應(yīng)用指南(2020版)
- (完整版)小學(xué)六年級人教版音樂總復(fù)習(xí)及知識點
- GB/T 6075.3-2011機械振動在非旋轉(zhuǎn)部件上測量評價機器的振動第3部分:額定功率大于15 kW額定轉(zhuǎn)速在120 r/min至15 000 r/min之間的在現(xiàn)場測量的工業(yè)機器
- 粉紅色春天古風(fēng)水墨PPT模板
- 三年級下冊美術(shù)課件第9課-玩玩水粉畫|滬教版-1
評論
0/150
提交評論