版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
專項42阿氏圓阿氏圓問題問題:求解“”類加權(quán)線段和最小值方法:①定:定系數(shù),并確定是半徑和哪條線段的比值②造:根據(jù)線段比,構(gòu)造母子型相似③算:根據(jù)母子型結(jié)論,計算定點位置④轉(zhuǎn):“”轉(zhuǎn)化為“”問題關(guān)鍵:①可解性:半徑長與圓心到加權(quán)線段中定點距離比等于加權(quán)系數(shù)②系數(shù)小于1:內(nèi)部構(gòu)造母子型③系數(shù)大于1:外部構(gòu)造母子型【典例分析】【典例1】閱讀以下材料,并按要求完成相應(yīng)的任務(wù).已知平面上兩點A、B,則所有符合=k(k>0且k≠1)的點P會組成一個圓.這個結(jié)論最先由古希臘數(shù)學(xué)家阿波羅尼斯發(fā)現(xiàn),稱阿氏圓.阿氏圓基本解法:構(gòu)造三角形相似.【問題】如圖1,在平面直角坐標(biāo)系中,在x軸,y軸上分別有點C(m,0),D(0,n),點P是平面內(nèi)一動點,且OP=r,設(shè)=k,求PC+kPD的最小值.阿氏圓的關(guān)鍵解題步驟:第一步:如圖1,在OD上取點M,使得OM:OP=OP:OD=k;第二步:證明kPD=PM;第三步:連接CM,此時CM即為所求的最小值.下面是該題的解答過程(部分):解:在OD上取點M,使得OM:OP=OP:OD=k,又∵∠POD=∠MOP,∴△POM∽△DOP.任務(wù):(1)將以上解答過程補充完整.(2)如圖2,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,D為△ABC內(nèi)一動點,滿足CD=2,利用(1)中的結(jié)論,請直接寫出AD+BD的最小值.【變式1】如圖,在Rt△ABC中,∠ABC=90°,AB=6,BC=9,⊙B的半徑為3,點P是⊙B上一點,連接AP,CP,則AP+CP的最小值為.【典例2】如圖,在扇形AOB中,∠AOB=90°,OA=4,C,D分別為OA,OB的中點,點P是上一點,則2PC+PD的最小值為.【變式21】如圖,扇形AOB中,∠AOB=90°,OA=6,C是OA的中點,D是OB上一點,OD=5,P是上一動點,則PC+PD的最小值為.【變式22】如圖,△ABC為等邊三角形,AB=6,將邊AB繞點A順時針旋轉(zhuǎn)θ(0°<θ<120°)得到線段AD,連接CD,∠BAD的平分線交CD于點E,點F為CD上一點,且DF=2CF,連接BF.(1)如圖①,當(dāng)θ=60°時,求EF的長;(2)如圖②,連接AF,求BF+AF的最小值.1.如圖,在Rt△ABC中,∠ACB=90°,CB=4,CA=6,⊙C半徑為2,P為圓上一動點,連接AP,BP,則AP+BP的最小值為()A. B.6 C.2 D.42.如圖,在正方形ABCD中.AB=8,點P是正方形ABCD內(nèi)部的一點,且滿足BP=4,則PD+PC的最小值是()A.6 B.8 C.10 D.123.如圖,在扇形COD中,∠COD=90°,OC=3,點A是OC中點,OB=2,點P是為CD上一點,則PB+2PA的最小值為.4.【新知探究】新定義:平面內(nèi)兩定點A,B,所有滿足=k(k為定值)的P點形成的圖形是圓,我們把這種圓稱之為“阿氏圓”【問題解決】如圖,在△ABC中,CB=4,AB=2AC,則△ABC面積的最大值為.5.如圖①,在正方形ABCD中,AB=1,點E,F(xiàn)為AD邊上的兩點,且AE=DF,連接CF交BD于點G,連接AG交BE于點H.(1)求證:AG⊥BE;(2)如圖②,點M為DC的中點,連接DH,M,求DH+HM的最小值;(3)連接BM,當(dāng)點E與點F重合時,求tan∠EBM的值.網(wǎng)版權(quán)所有6.如圖,已知拋物線y=﹣x2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度生態(tài)公園車位租賃與休閑娛樂服務(wù)協(xié)議4篇
- 2025年度藝術(shù)品代理合同終止及展覽策劃協(xié)議4篇
- 二零二五版跨行業(yè)企業(yè)戰(zhàn)略合作保密及數(shù)據(jù)共享協(xié)議3篇
- 離婚2025年度子女監(jiān)護(hù)權(quán)變更合同3篇
- 2025年農(nóng)業(yè)大棚租賃與農(nóng)產(chǎn)品質(zhì)量安全檢測服務(wù)協(xié)議4篇
- 2025年度園林景觀蟲害防治與植物保護(hù)合同4篇
- 家庭中醫(yī)急救技能普及工作匯報
- 現(xiàn)代家庭教育的新篇章-從理論到操作的全面解讀與實踐探索
- 探索創(chuàng)新型康復(fù)治療在醫(yī)療教育中的價值
- 科技小能手的培養(yǎng)計劃觀察與思考的融合
- 三級人工智能訓(xùn)練師(高級)職業(yè)技能等級認(rèn)定考試題及答案
- 華為全屋智能試題
- 第三單元名著導(dǎo)讀《經(jīng)典常談》知識清單 統(tǒng)編版語文八年級下冊
- 第十七章-阿法芙·I·梅勒斯的轉(zhuǎn)變理論
- 焊接機(jī)器人在汽車制造中應(yīng)用案例分析報告
- 合成生物學(xué)在生物技術(shù)中的應(yīng)用
- 中醫(yī)門診病歷
- 廣西華銀鋁業(yè)財務(wù)分析報告
- 無違法犯罪記錄證明申請表(個人)
- 大學(xué)生勞動教育PPT完整全套教學(xué)課件
- 繼電保護(hù)原理應(yīng)用及配置課件
評論
0/150
提交評論