2023-2024學(xué)年貴州省六盤水市第二中學(xué)高三高考模擬考試數(shù)學(xué)試題試卷_第1頁
2023-2024學(xué)年貴州省六盤水市第二中學(xué)高三高考模擬考試數(shù)學(xué)試題試卷_第2頁
2023-2024學(xué)年貴州省六盤水市第二中學(xué)高三高考模擬考試數(shù)學(xué)試題試卷_第3頁
2023-2024學(xué)年貴州省六盤水市第二中學(xué)高三高考模擬考試數(shù)學(xué)試題試卷_第4頁
2023-2024學(xué)年貴州省六盤水市第二中學(xué)高三高考模擬考試數(shù)學(xué)試題試卷_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年貴州省六盤水市第二中學(xué)高三高考模擬考試數(shù)學(xué)試題試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.一袋中裝有個(gè)紅球和個(gè)黑球(除顏色外無區(qū)別),任取球,記其中黑球數(shù)為,則為()A. B. C. D.2.已知函數(shù),,若存在實(shí)數(shù),使成立,則正數(shù)的取值范圍為()A. B. C. D.3.正的邊長為2,將它沿邊上的高翻折,使點(diǎn)與點(diǎn)間的距離為,此時(shí)四面體的外接球表面積為()A. B. C. D.4.將4名大學(xué)生分配到3個(gè)鄉(xiāng)鎮(zhèn)去當(dāng)村官,每個(gè)鄉(xiāng)鎮(zhèn)至少一名,則不同的分配方案種數(shù)是()A.18種 B.36種 C.54種 D.72種5.若時(shí),,則的取值范圍為()A. B. C. D.6.2020年是脫貧攻堅(jiān)決戰(zhàn)決勝之年,某市為早日實(shí)現(xiàn)目標(biāo),現(xiàn)將甲、乙、丙、丁4名干部派遺到、、三個(gè)貧困縣扶貧,要求每個(gè)貧困縣至少分到一人,則甲被派遣到縣的分法有()A.6種 B.12種 C.24種 D.36種7.函數(shù)在上單調(diào)遞增,則實(shí)數(shù)的取值范圍是()A. B. C. D.8.已知雙曲線的中心在原點(diǎn)且一個(gè)焦點(diǎn)為,直線與其相交于,兩點(diǎn),若中點(diǎn)的橫坐標(biāo)為,則此雙曲線的方程是A. B.C. D.9.對于正在培育的一顆種子,它可能1天后發(fā)芽,也可能2天后發(fā)芽,….下表是20顆不同種子發(fā)芽前所需培育的天數(shù)統(tǒng)計(jì)表,則這組種子發(fā)芽所需培育的天數(shù)的中位數(shù)是()發(fā)芽所需天數(shù)1234567種子數(shù)43352210A.2 B.3 C.3.5 D.410.若,則的值為()A. B. C. D.11.如圖,已知平面,,、是直線上的兩點(diǎn),、是平面內(nèi)的兩點(diǎn),且,,,,.是平面上的一動點(diǎn),且直線,與平面所成角相等,則二面角的余弦值的最小值是()A. B. C. D.12.若雙曲線:的一條漸近線方程為,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知的展開式中含有的項(xiàng)的系數(shù)是,則展開式中各項(xiàng)系數(shù)和為______.14.拋物線上到其焦點(diǎn)距離為5的點(diǎn)有_______個(gè).15.展開式中項(xiàng)的系數(shù)是__________16.已知等邊三角形的邊長為1.,點(diǎn)、分別為線段、上的動點(diǎn),則取值的集合為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在銳角中,角A,B,C所對的邊分別為a,b,c.已知.(1)求的值;(2)當(dāng),且時(shí),求的面積.18.(12分)已知橢圓,上、下頂點(diǎn)分別是、,上、下焦點(diǎn)分別是、,焦距為,點(diǎn)在橢圓上.(1)求橢圓的方程;(2)若為橢圓上異于、的動點(diǎn),過作與軸平行的直線,直線與交于點(diǎn),直線與直線交于點(diǎn),判斷是否為定值,說明理由.19.(12分)某商場為改進(jìn)服務(wù)質(zhì)量,在進(jìn)場購物的顧客中隨機(jī)抽取了人進(jìn)行問卷調(diào)查.調(diào)查后,就顧客“購物體驗(yàn)”的滿意度統(tǒng)計(jì)如下:滿意不滿意男女是否有的把握認(rèn)為顧客購物體驗(yàn)的滿意度與性別有關(guān)?若在購物體驗(yàn)滿意的問卷顧客中按照性別分層抽取了人發(fā)放價(jià)值元的購物券.若在獲得了元購物券的人中隨機(jī)抽取人贈其紀(jì)念品,求獲得紀(jì)念品的人中僅有人是女顧客的概率.附表及公式:.20.(12分)如圖,在直角中,,,,點(diǎn)在線段上.(1)若,求的長;(2)點(diǎn)是線段上一點(diǎn),,且,求的值.21.(12分)已知函數(shù).(1)若在上為單調(diào)函數(shù),求實(shí)數(shù)a的取值范圍:(2)若,記的兩個(gè)極值點(diǎn)為,,記的最大值與最小值分別為M,m,求的值.22.(10分)如圖,在四棱錐中,,,,底面為正方形,、分別為、的中點(diǎn).(1)求證:平面;(2)求直線與平面所成角的正弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.A【解析】

由題意可知,隨機(jī)變量的可能取值有、、、,計(jì)算出隨機(jī)變量在不同取值下的概率,進(jìn)而可求得隨機(jī)變量的數(shù)學(xué)期望值.【詳解】由題意可知,隨機(jī)變量的可能取值有、、、,則,,,.因此,隨機(jī)變量的數(shù)學(xué)期望為.故選:A.【點(diǎn)睛】本題考查隨機(jī)變量數(shù)學(xué)期望的計(jì)算,考查計(jì)算能力,屬于基礎(chǔ)題.2.A【解析】

根據(jù)實(shí)數(shù)滿足的等量關(guān)系,代入后將方程變形,構(gòu)造函數(shù),并由導(dǎo)函數(shù)求得的最大值;由基本不等式可求得的最小值,結(jié)合存在性問題的求法,即可求得正數(shù)的取值范圍.【詳解】函數(shù),,由題意得,即,令,∴,∴在上單調(diào)遞增,在上單調(diào)遞減,∴,而,當(dāng)且僅當(dāng),即當(dāng)時(shí),等號成立,∴,∴.故選:A.【點(diǎn)睛】本題考查了導(dǎo)數(shù)在求函數(shù)最值中的應(yīng)用,由基本不等式求函數(shù)的最值,存在性成立問題的解法,屬于中檔題.3.D【解析】

如圖所示,設(shè)的中點(diǎn)為,的外接圓的圓心為,四面體的外接球的球心為,連接,利用正弦定理可得,利用球心的性質(zhì)和線面垂直的性質(zhì)可得四邊形為平行四邊形,最后利用勾股定理可求外接球的半徑,從而可得外接球的表面積.【詳解】如圖所示,設(shè)的中點(diǎn)為,外接圓的圓心為,四面體的外接球的球心為,連接,則平面,.因?yàn)?,故,因?yàn)?,?由正弦定理可得,故,又因?yàn)?,?因?yàn)?,故平面,所以,因?yàn)槠矫妫矫?,故,故,所以四邊形為平行四邊形,所以,所以,故外接球的半徑為,外接球的表面積為.故選:D.【點(diǎn)睛】本題考查平面圖形的折疊以及三棱錐外接球表面積的計(jì)算,還考查正弦定理和余弦定理,折疊問題注意翻折前后的變量與不變量,外接球問題注意先確定外接球的球心的位置,然后把半徑放置在可解的直角三角形中來計(jì)算,本題有一定的難度.4.B【解析】

把4名大學(xué)生按人數(shù)分成3組,為1人、1人、2人,再把這三組分配到3個(gè)鄉(xiāng)鎮(zhèn)即得.【詳解】把4名大學(xué)生按人數(shù)分成3組,為1人、1人、2人,再把這三組分配到3個(gè)鄉(xiāng)鎮(zhèn),則不同的分配方案有種.故選:.【點(diǎn)睛】本題考查排列組合,屬于基礎(chǔ)題.5.D【解析】

由題得對恒成立,令,然后分別求出即可得的取值范圍.【詳解】由題得對恒成立,令,在單調(diào)遞減,且,在上單調(diào)遞增,在上單調(diào)遞減,,又在單調(diào)遞增,,的取值范圍為.故選:D【點(diǎn)睛】本題主要考查了不等式恒成立問題,導(dǎo)數(shù)的綜合應(yīng)用,考查了轉(zhuǎn)化與化歸的思想.求解不等式恒成立問題,可采用參變量分離法去求解.6.B【解析】

分成甲單獨(dú)到縣和甲與另一人一同到縣兩種情況進(jìn)行分類討論,由此求得甲被派遣到縣的分法數(shù).【詳解】如果甲單獨(dú)到縣,則方法數(shù)有種.如果甲與另一人一同到縣,則方法數(shù)有種.故總的方法數(shù)有種.故選:B【點(diǎn)睛】本小題主要考查簡答排列組合的計(jì)算,屬于基礎(chǔ)題.7.B【解析】

對分類討論,當(dāng),函數(shù)在單調(diào)遞減,當(dāng),根據(jù)對勾函數(shù)的性質(zhì),求出單調(diào)遞增區(qū)間,即可求解.【詳解】當(dāng)時(shí),函數(shù)在上單調(diào)遞減,所以,的遞增區(qū)間是,所以,即.故選:B.【點(diǎn)睛】本題考查函數(shù)單調(diào)性,熟練掌握簡單初等函數(shù)性質(zhì)是解題關(guān)鍵,屬于基礎(chǔ)題.8.D【解析】

根據(jù)點(diǎn)差法得,再根據(jù)焦點(diǎn)坐標(biāo)得,解方程組得,,即得結(jié)果.【詳解】設(shè)雙曲線的方程為,由題意可得,設(shè),,則的中點(diǎn)為,由且,得,,即,聯(lián)立,解得,,故所求雙曲線的方程為.故選D.【點(diǎn)睛】本題主要考查利用點(diǎn)差法求雙曲線標(biāo)準(zhǔn)方程,考查基本求解能力,屬于中檔題.9.C【解析】

根據(jù)表中數(shù)據(jù),即可容易求得中位數(shù).【詳解】由圖表可知,種子發(fā)芽天數(shù)的中位數(shù)為,故選:C.【點(diǎn)睛】本題考查中位數(shù)的計(jì)算,屬基礎(chǔ)題.10.C【解析】

根據(jù),再根據(jù)二項(xiàng)式的通項(xiàng)公式進(jìn)行求解即可.【詳解】因?yàn)?,所以二?xiàng)式的展開式的通項(xiàng)公式為:,令,所以,因此有.故選:C【點(diǎn)睛】本題考查了二項(xiàng)式定理的應(yīng)用,考查了二項(xiàng)式展開式通項(xiàng)公式的應(yīng)用,考查了數(shù)學(xué)運(yùn)算能力11.B【解析】

為所求的二面角的平面角,由得出,求出在內(nèi)的軌跡,根據(jù)軌跡的特點(diǎn)求出的最大值對應(yīng)的余弦值【詳解】,,,,同理為直線與平面所成的角,為直線與平面所成的角,又,在平面內(nèi),以為軸,以的中垂線為軸建立平面直角坐標(biāo)系則,設(shè),整理可得:在內(nèi)的軌跡為為圓心,以為半徑的上半圓平面平面,,為二面角的平面角,當(dāng)與圓相切時(shí),最大,取得最小值此時(shí)故選【點(diǎn)睛】本題主要考查了二面角的平面角及其求法,方法有:定義法、三垂線定理及其逆定理、找公垂面法、射影公式、向量法等,依據(jù)題目選擇方法求出結(jié)果.12.A【解析】

根據(jù)雙曲線的漸近線列方程,解方程求得的值.【詳解】由題意知雙曲線的漸近線方程為,可化為,則,解得.故選:A【點(diǎn)睛】本小題主要考查雙曲線的漸近線,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.1【解析】

由二項(xiàng)式定理及展開式通項(xiàng)公式得:,解得,令得:展開式中各項(xiàng)系數(shù)和,得解.【詳解】解:由的展開式的通項(xiàng),令,得含有的項(xiàng)的系數(shù)是,解得,令得:展開式中各項(xiàng)系數(shù)和為,故答案為:1.【點(diǎn)睛】本題考查了二項(xiàng)式定理及展開式通項(xiàng)公式,屬于中檔題.14.2【解析】

設(shè)符合條件的點(diǎn),由拋物線的定義可得,即可求解.【詳解】設(shè)符合條件的點(diǎn),則,所以符合條件的點(diǎn)有2個(gè).故答案為:2【點(diǎn)睛】本題考查拋物線的定義的應(yīng)用,考查拋物線的焦半徑.15.-20【解析】

根據(jù)二項(xiàng)式定理的通項(xiàng)公式,再分情況考慮即可求解.【詳解】解:展開式中項(xiàng)的系數(shù):二項(xiàng)式由通項(xiàng)公式當(dāng)時(shí),項(xiàng)的系數(shù)是,當(dāng)時(shí),項(xiàng)的系數(shù)是,故的系數(shù)為;故答案為:【點(diǎn)睛】本題主要考查二項(xiàng)式定理的應(yīng)用,注意分情況考慮,屬于基礎(chǔ)題.16.【解析】

根據(jù)題意建立平面直角坐標(biāo)系,設(shè)三角形各點(diǎn)的坐標(biāo),依題意求出,,,的表達(dá)式,再進(jìn)行數(shù)量積的運(yùn)算,最后求和即可得出結(jié)果.【詳解】解:以的中點(diǎn)為坐標(biāo)原點(diǎn),所在直線為軸,線段的垂直平分線為軸建立平面直角坐標(biāo)系,如圖所示,則,,,,則,,,設(shè),,,即點(diǎn)的坐標(biāo)為,則,,,所以故答案為:【點(diǎn)睛】本題考查平面向量的坐標(biāo)表示和線性運(yùn)算,以及平面向量基本定理和數(shù)量積的運(yùn)算,是中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1);(2)【解析】

(1)利用二倍角公式求解即可,注意隱含條件.(2)利用(1)中的結(jié)論,結(jié)合正弦定理和同角三角函數(shù)的關(guān)系易得的值,又由求出的值,最后由正弦定理求出的值,根據(jù)三角形的面積公式即可計(jì)算得出.【詳解】(1)由已知可得,所以,因?yàn)樵阡J角中,,所以(2)因?yàn)?,所以,因?yàn)槭卿J角三角形,所以,所以.由正弦定理可得:,所以,所以【點(diǎn)睛】此類問題是高考的常考題型,主要考查了正弦定理、三角函數(shù)以及三角恒等變換等知識,同時(shí)考查了學(xué)生的基本運(yùn)算能力和利用三角公式進(jìn)行恒等變換的技能,屬于中檔題.18.(1);(2),理由見解析.【解析】

(1)求出橢圓的上、下焦點(diǎn)坐標(biāo),利用橢圓的定義求得的值,進(jìn)而可求得的值,由此可得出橢圓的方程;(2)設(shè)點(diǎn)的坐標(biāo)為,求出直線的方程,求出點(diǎn)的坐標(biāo),由此計(jì)算出直線和的斜率,可計(jì)算出的值,進(jìn)而可求得的值,即可得出結(jié)論.【詳解】(1)由題意可知,橢圓的上焦點(diǎn)為、,由橢圓的定義可得,可得,,因此,所求橢圓的方程為;(2)設(shè)點(diǎn)的坐標(biāo)為,則,得,直線的斜率為,所以,直線的方程為,聯(lián)立,解得,即點(diǎn),直線的斜率為,直線的斜率為,所以,,,因此,.【點(diǎn)睛】本題考查橢圓方程的求解,同時(shí)也考查了橢圓中定值問題的求解,考查計(jì)算能力,屬于中等題.19.有的把握認(rèn)為顧客購物體驗(yàn)的滿意度與性別有關(guān);.【解析】

由題得,根據(jù)數(shù)據(jù)判斷出顧客購物體驗(yàn)的滿意度與性別有關(guān);獲得了元購物券的人中男顧客有人,記為,;女顧客有人,記為,,,.從中隨機(jī)抽取人,所有基本事件有個(gè),其中僅有1人是女顧客的基本事件有個(gè),進(jìn)而求出獲得紀(jì)念品的人中僅有人是女顧客的概率.【詳解】解析:由題得所以,有的把握認(rèn)為顧客購物體驗(yàn)的滿意度與性別有關(guān).獲得了元購物券的人中男顧客有人,記為,;女顧客有人,記為,,,.從中隨機(jī)抽取人,所有基本事件有:,,,,,,,,,,,,,,,共個(gè).其中僅有1人是女顧客的基本事件有:,,,,,,,,共個(gè).所以獲得紀(jì)念品的人中僅有人是女顧客的概率.【點(diǎn)睛】本小題主要考查統(tǒng)計(jì)案例、卡方分布、概率等基本知識,考查概率統(tǒng)計(jì)基本思想以及抽象概括等能力和應(yīng)用意識,屬于中檔題.20.(1)3;(2).【解析】

(1)在中,利用正弦定理即可得到答案;(2)由可得,在中,利用及余弦定理得,解方程組即可.【詳解】(1)在中,已知,,,由正弦定理,得,解得.(2)因?yàn)?,所以,解?在中,由余弦定理得,,即,,故.【點(diǎn)睛】本題考查正余弦定理在解三角形中的應(yīng)用,考查學(xué)生的計(jì)算能力,是一道中檔題.21.(1);(2)【解析】

(1)求導(dǎo).根據(jù)單調(diào),轉(zhuǎn)化為對恒成立求解(2)由(1)知,是的兩個(gè)根,不妨設(shè),令.根據(jù),確定,將轉(zhuǎn)化為.令,用導(dǎo)數(shù)法研究其單調(diào)性求最值.【詳解】(1)的定義域?yàn)椋?因?yàn)閱握{(diào),所以對恒成立,所以,恒成立,因?yàn)?,?dāng)且僅當(dāng)時(shí)取等號,所以;(2)由(1)知,是的兩個(gè)根.從而,,不妨設(shè),則.因?yàn)?,所以t為關(guān)于a的減函數(shù),所以..令,則.因?yàn)楫?dāng)時(shí),在上為減函數(shù).所以當(dāng)時(shí),.從而,所以在上為減函數(shù).所以當(dāng)時(shí),.【點(diǎn)睛】本題主要考查導(dǎo)數(shù)在函數(shù)中的綜合應(yīng)用,還考查了轉(zhuǎn)化化歸的思想和運(yùn)算求解的能力,屬于難題.22.(1)見解析;(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論