版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
江西省九江市湖口二中2025屆高二上數(shù)學期末調研試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若雙曲線的兩個焦點為,點是上的一點,且,則雙曲線的漸近線與軸的夾角的取值范圍是()A. B.C. D.2.在中國共產黨建黨100周年之際,廣安市某中學組織了“黨史知識競賽”活動,已知該校共有高中學生1000人,用分層抽樣的方法從該校高中學生中抽取一個容量為25的樣本參加活動,其中高二年級抽取了8人,則該校高二年級學生人數(shù)為()A.960 B.720C.640 D.3203.函數(shù)的定義域為開區(qū)間,導函數(shù)在內的圖像如圖所示,則函數(shù)在開區(qū)間內有極小值點()A.個 B.個C.個 D.個4.等比數(shù)列滿足,,則()A.11 B.C.9 D.5.數(shù)列滿足,,,則數(shù)列的前8項和為()A.25 B.26C.27 D.286.已知橢圓的左右焦點分別為、,點在橢圓上,若、、是一個直角三角形的三個頂點,則點到軸的距離為A B.4C. D.7.已知數(shù)列為等比數(shù)列,若,則的值為()A.-4 B.4C.-2 D.28.已知兩條不同直線和平面,下列判斷正確的是()A.若則 B.若則C.若則 D.若則9.橢圓的一個焦點坐標為,則實數(shù)m的值為()A.2 B.4C. D.10.f(x),g(x)分別是定義在R上的奇函數(shù)和偶函數(shù),當x<0時,f(x)g(x)+f(x)g(x)<0且f(﹣1)=0則不等式f(x)g(x)<0的解集為A.(﹣1,0)∪(1,+∞) B.(﹣1,0)∪(0,1)C.(﹣∞,﹣1)∪(1,+∞) D.(﹣∞,﹣1)∪(0,1)11.設為坐標原點,直線與拋物線C:交于,兩點,若,則的焦點坐標為()A. B.C. D.12.某大學數(shù)學系共有本科生1500人,其中一、二、三、四年級的人數(shù)比為,要用分層隨機抽樣的方法從中抽取一個容量為300的樣本,則應抽取的三年級學生的人數(shù)為()A.20 B.40C.60 D.80二、填空題:本題共4小題,每小題5分,共20分。13.過拋物線的準線上任意一點做拋物線的切線,切點分別為,則A點到準線的距離與點到準線的距離之和的最小值為___________14.已知等差數(shù)列是首項為的遞增數(shù)列,若,,則滿足條件的數(shù)列的一個通項公式為______15.已知數(shù)列是等差數(shù)列,,公差,為其前n項和,滿足,則當取得最大值時,______16.已知直線l:和圓C:,過直線l上一點P作圓C的一條切線,切點為A,則的最小值為______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知拋物線,過點作直線(1)若直線的斜率存在,且與拋物線只有一個公共點,求直線的方程(2)若直線過拋物線的焦點,且交拋物線于兩點,求弦長18.(12分)已知函數(shù).(1)若,討論函數(shù)的單調性;(2)當時,求在區(qū)間上的最小值和最大值.19.(12分)已知以點為圓心的圓與直線相切,過點的動直線l與圓A相交于M,N兩點(1)求圓A的方程(2)當時,求直線l方程20.(12分)已知函數(shù).(I)當時,求曲線在處的切線方程;(Ⅱ)若當時,,求的取值范圍.21.(12分)已知橢圓C:,右焦點為F(,0),且離心率為(1)求橢圓C的標準方程;(2)設M,N是橢圓C上不同的兩點,且直線MN與圓O:相切,若T為弦MN的中點,求|OT||MN|的取值范圍22.(10分)在平面直角坐標系中,已知點,軸于點,是線段上的動點,軸于點,于點,與相交于點.(1)判斷點是否在拋物線上,并說明理由;(2)過點作拋物線的切線交軸于點,過拋物線上的點作拋物線的切線交軸于點,……,以此類推,得到數(shù)列,求,及數(shù)列的通項公式.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】由條件結合雙曲線的定義可得,然后可得,然后可求出的范圍即可.【詳解】由雙曲線的定義可得,結合可得當點不為雙曲線的頂點時,可得,即當點為雙曲線的頂點時,可得,即所以,所以,所以所以雙曲線的漸近線與軸的夾角的取值范圍是故選:B2、D【解析】由分層抽樣各層成比例計算即可【詳解】設高二年級學生人數(shù)為,則,解得故選:D3、A【解析】利用極小值的定義判斷可得出結論.【詳解】由導函數(shù)在區(qū)間內的圖象可知,函數(shù)在內的圖象與軸有四個公共點,在從左到右第一個點處導數(shù)左正右負,在從左到右第二個點處導數(shù)左負右正,在從左到右第三個點處導數(shù)左正右正,在從左到右第四個點處導數(shù)左正右負,所以函數(shù)在開區(qū)間內的極小值點有個,故選:A.4、B【解析】由已知結合等比數(shù)列的性質即可求解.【詳解】由數(shù)列是等比數(shù)列,得:,故選:B5、C【解析】根據(jù)通項公式及求出,從而求出前8項和.【詳解】當時,,當時,,當時,,當時,,當時,,當時,,則數(shù)列的前8項和為.故選:C6、D【解析】設橢圓短軸的一個端點為根據(jù)橢圓方程求得c,進而判斷出,即得或令,進而可得點P到x軸的距離【詳解】解:設橢圓短軸的一個端點為M由于,,;,只能或令,得,故選D【點睛】本題主要考查了橢圓的基本應用考查了學生推理和實際運算能力是基礎題7、B【解析】根據(jù),利用等比數(shù)列的通項公式求解.【詳解】因為,所以,則,解得,所以.故選:B8、D【解析】根據(jù)線線、線面、面面的平行與垂直的位置關系即可判斷.【詳解】解:對于選項A:若,則與可能平行,可能相交,可能異面,故選項A錯誤;對于選項B:若,則,故選項B錯誤;對于選項C:當時不滿足,故選項C錯誤;綜上,可知選項D正確.故選:D.9、C【解析】由焦點坐標得到,求解即可.【詳解】根據(jù)焦點坐標可知,橢圓焦點在y軸上,所以有,解得故選:C.10、A【解析】構造函數(shù)h(x)=f(x)g(x),由已知得當x<0時,h(x)<0,所以函數(shù)y=h(x)在(﹣∞,0)單調遞減,又因為f(x),g(x)分別是定義在R上的奇函數(shù)和偶函數(shù),得函數(shù)y=h(x)為R上的奇函數(shù),所以函數(shù)y=h(x)在(0,+∞)單調遞減,得到f(x)g(x)<0不等式的解集【詳解】設h(x)=f(x)g(x),因為當x<0時,f(x)g(x)+f(x)g(x)<0,所以當x<0時,h(x)<0,所以函數(shù)y=h(x)在(﹣∞,0)單調遞減,又因為f(x),g(x)分別是定義在R上的奇函數(shù)和偶函數(shù),所以函數(shù)y=h(x)為R上的奇函數(shù),所以函數(shù)y=h(x)在(0,+∞)單調遞減,因為f(﹣1)=0,所以函數(shù)y=h(x)的大致圖象如下:所以等式f(x)g(x)<0的解集為(﹣1,0)∪(1,+∞)故選A【點睛】本題考查導數(shù)乘法法則、導數(shù)的符號與函數(shù)單調性的關系;奇函數(shù)的單調性在對稱區(qū)間上一致,屬于中檔題11、B【解析】根據(jù)題中所給的條件,結合拋物線的對稱性,可知,從而可以確定出點的坐標,代入方程求得的值,進而求得其焦點坐標,得到結果.【詳解】因為直線與拋物線交于兩點,且,根據(jù)拋物線的對稱性可以確定,所以,代入拋物線方程,求得,所以其焦點坐標為,故選:B.【點睛】該題考查的是有關圓錐曲線的問題,涉及到的知識點有直線與拋物線的交點,拋物線的對稱性,點在拋物線上的條件,拋物線的焦點坐標,屬于簡單題目.12、C【解析】根據(jù)給定條件利用分層抽樣的抽樣比直接計算作答.【詳解】依題意,三年級學生的總人數(shù)為,從1500人中用分層隨機抽樣抽取容量為300的樣本的抽樣比為,所以應抽取的三年級學生的人數(shù)為.故選:C二、填空題:本題共4小題,每小題5分,共20分。13、8【解析】設,,,,由可得,根據(jù)導數(shù)的幾何意義求得兩切線的方程,聯(lián)立求得點的坐標,再根到準線的距離轉化為到焦點的距離,三點共線時距離最小,進而求出最小值【詳解】解:設,,,,由可得,所以,所以直線,的方程分別為:,,聯(lián)立,解得,即,,又有在準線上,所以,所以,設直線的方程為:,代入拋物線的方程可得:,可得,所以可得,即直線恒過點,即直線恒過焦點,即直的方程為:,代入拋物線的方程:,,所以,點到準線的距離與點到準線的距離之和,所以當時,距離之和最小且為8,這時直線平行于軸故答案為:814、,答案不唯一【解析】由,,可得,進而解得,然后寫出通項公式即可.【詳解】設數(shù)列的公差為d,由題可得,因為,,所以有,解得,只要公差d滿足即可,然后根據(jù)等差數(shù)列的通項公式寫出即可,我們可以取,此時.故答案為:,答案不唯一.15、9或10【解析】等差數(shù)列通項公式的使用.【詳解】數(shù)列是等差數(shù)列,且,得,得,則有,又因為,公差,所以或10時,取得最大值故答案為:9或1016、1【解析】求出圓C的圓心坐標、半徑,再借助圓的切線性質及勾股定理列式計算作答.【詳解】圓C:,圓心為,半徑,點C到直線l的距離,由圓的切線性質知:,當且僅當,即點P是過點C作直線l的垂線的垂足時取“=”,所以的最小值為1故答案為:1三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)或;(2)8【解析】(1)根據(jù)題意設直線的方程為,聯(lián)立,消去得,因為只有一個公共點,則求解.(2)拋物線的焦點為,設直線的方程為,聯(lián)立,消去得,再根據(jù)過拋物線焦點的弦長公式求解.【詳解】(1)設直線的方程為,聯(lián)立,消去得,則,解得或,∴直線的方程為:或(2)拋物線的焦點為,則直線的方程為,設,聯(lián)立,消去得,∴,∴【點睛】本題主要考查直線與拋物線的位置關系,還考查了運算求解的能力,屬于中檔題.18、(1)在和上單調遞增,在上單調遞減.(2)答案見解析.【解析】(1)求解導函數(shù),并求出的兩根,得和的解集,從而得函數(shù)單調性;(2)由(1)得函數(shù)的單調性,從而得最小值,計算,再分類討論與兩種情況下的最大值.【小問1詳解】函數(shù)定義域為,,時,或,因為,所以,時,或,時,,所以函數(shù)在和上單調遞增,在上單調遞減.【小問2詳解】因為,由(1)知,在上單調遞減,在上單調遞增,所以最小值為,又因為,當時,,此時最小值為,最大值為;當時,,此時最小值為,最大值為.【點睛】導數(shù)是研究函數(shù)的單調性、極值(最值)最有效的工具,而函數(shù)是高中數(shù)學中重要的知識點,對導數(shù)的應用的考查主要從以下幾個角度進行:(1)考查導數(shù)的幾何意義,往往與解析幾何、微積分相聯(lián)系.(2)利用導數(shù)求函數(shù)的單調區(qū)間,判斷單調性;已知單調性,求參數(shù).(3)利用導數(shù)求函數(shù)的最值(極值),解決生活中的優(yōu)化問題.(4)考查數(shù)形結合思想的應用19、(1);(2)或.【解析】(1)利用圓心到直線的距離公式求圓的半徑,從而求解圓的方程;(2)根據(jù)相交弦長公式,求出圓心到直線的距離,設出直線方程,再根據(jù)點到直線的距離公式確定直線方程【詳解】(1)由題意知到直線的距離為圓A半徑r,所以,所以圓A的方程為(2)設的中點為Q,則由垂徑定理可知,且,在中由勾股定理易知,設動直線l方程為:或,顯然符合題意由到直線l距離為1知得所以或為所求直線方程【點睛】本題考查圓的標準方程及直線與圓的相交弦長問題,考查學生分析解決問題的能力,屬于中檔題20、(1)(2)【解析】(Ⅰ)先求的定義域,再求,,,由直線方程的點斜式可求曲線在處的切線方程為(Ⅱ)構造新函數(shù),對實數(shù)分類討論,用導數(shù)法求解.試題解析:(I)定義域為.當時,,曲線在處的切線方程為(II)當時,等價于設,則,(i)當,時,,故在上單調遞增,因此;(ii)當時,令得.由和得,故當時,,在單調遞減,因此.綜上,的取值范圍是【考點】導數(shù)的幾何意義,利用導數(shù)判斷函數(shù)的單調性【名師點睛】求函數(shù)的單調區(qū)間的方法:(1)確定函數(shù)y=f(x)定義域;(2)求導數(shù)y′=f′(x);(3)解不等式f′(x)>0,解集在定義域內的部分為單調遞增區(qū)間;(4)解不等式f′(x)<0,解集在定義域內的部分為單調遞減區(qū)間21、(1);(2)[,3].【解析】(1)由題可得,即求;(2)當直線的斜率不存在或為0,易求,當直線MN斜率存在且不為0時,設直線MN的方程為:,利用直線與圓相切可得,再聯(lián)立橢圓方程并應用韋達定理求得,然后利用基本不等式即得.【小問1詳解】由題可得,∴??=2,??=∴橢圓C的方程為:;小問2詳解】當直線MN斜率為0時,不妨取直線MN為??=,則,此時,則;當直線MN斜率不存在,不妨取直線MN為x=,則,此時,則;當直線MN斜率存在且不為0時,設直線MN的方程為:,,因為直線MN與圓相切,所以,即,又因為直線MN與橢圓C交于M,N兩點:由,得,則,所以MN中點T坐標為,則,,所以又,當且僅當,即取等號,∴|OT||MN|;綜上所述:|OT|?|MN|的取值范圍為[,3].22、(1)在拋物線上,理由見解析(2),,.【解析】(1)根據(jù)直線的方程設出點的坐標,利用已知條件求出點的坐標即可判斷點是否在拋物線上;(2)設出直線的直線方程,與拋物線聯(lián)立,令,即可求出,同理可以求出,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 協(xié)議離婚的協(xié)議書范本10篇
- 2023安全生產責任協(xié)議書七篇
- 萬能模板賠償協(xié)議書范本10篇
- 機械基礎 課件 模塊六任務二 鏈傳動
- 中醫(yī)藥基礎專題知識宣教
- (立項備案申請模板)超薄金剛石項目可行性研究報告參考范文
- (安全生產)選礦廠安全生產標準化自評報告
- (2024)酒文化創(chuàng)意產業(yè)園建設項目可行性研究報告(一)
- 清明節(jié)緬懷先烈主題班會71
- 2023年薄板木船項目籌資方案
- 【基于抖音短視頻的營銷策略分析文獻綜述2800字(論文)】
- 2021-2022學年度西城區(qū)五年級上冊英語期末考試試題
- 《組織行為學》(本)形考任務1-4
- 廣東省廣州市白云區(qū)2022-2023學年九年級上學期期末語文試題
- 劇本-進入黑夜的漫長旅程
- DB43-T 958.3-2023 實驗用小型豬 第3部分:配合飼料
- 化肥購銷合同范本正規(guī)范本(通用版)
- 健康管理專業(yè)職業(yè)生涯規(guī)劃書
- 外墻巖棉板施工方案
- 吊裝葫蘆施工方案
- 自動化設備調試規(guī)范
評論
0/150
提交評論