安徽省宣城二中2025屆高一上數(shù)學期末聯(lián)考模擬試題含解析_第1頁
安徽省宣城二中2025屆高一上數(shù)學期末聯(lián)考模擬試題含解析_第2頁
安徽省宣城二中2025屆高一上數(shù)學期末聯(lián)考模擬試題含解析_第3頁
安徽省宣城二中2025屆高一上數(shù)學期末聯(lián)考模擬試題含解析_第4頁
安徽省宣城二中2025屆高一上數(shù)學期末聯(lián)考模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

安徽省宣城二中2025屆高一上數(shù)學期末聯(lián)考模擬試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知函數(shù)是上的奇函數(shù),且對任意實數(shù)、當時,都有.如果存在實數(shù),使得不等式成立,則實數(shù)的取值范圍是A. B.C. D.2.已知集合A={x|<2},B={x|log2x>0},則()A. B.A∩B=C.或 D.3.當時,在同一坐標系中,函數(shù)與的圖像是()A. B.C. D.4.下列四個函數(shù),最小正周期是的是()A. B.C. D.5.設,則()A.3 B.2C.1 D.-16.函數(shù)的部分圖象如圖所示,將其向右平移個單位長度后得到的函數(shù)解析式為()A. B.C. D.7.在平面直角坐標系中,以為圓心的圓與軸和軸分別相切于兩點,點分別在線段上,若,與圓相切,則的最小值為A. B.C. D.8.已知函數(shù)的圖象如圖所示,則函數(shù)與在同一直角坐標系中的圖象是A. B.C. D.9.集合中所含元素為A.0,1 B.,1C.,0 D.110.已知偶函數(shù)的定義域為,當時,,若,則的解集為()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知,則________12.已知,則___________.13.計算:________.14.若直線與圓相切,則__________15.若函數(shù)滿足,且當時,則______16.已知在上的最大值和最小值分別為和,則的最小值為__________三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知定義域為R的函數(shù)是奇函數(shù).(1)求a的值;(2)求不等式的解集.18.蘆薈是一種經(jīng)濟價值很高的觀賞、食用植物,不僅可美化居室、凈化空氣,又可美容保健,因此深受人們歡迎,在國內占有很大的市場.某人準備進軍蘆薈市場,栽培蘆薈,為了了解行情,進行市場調研,從4月1日起,蘆薈的種植成本Q(單位:元/10kg)與上市時間t(單位:天)的數(shù)據(jù)情況如表:t50110250Q150108150(1)根據(jù)表中數(shù)據(jù),從下列函數(shù)中選取一個最能反映蘆薈種植成本Q與上市時間t的變化關系:Q=at+b,Q=at2+bt+c,Q=a·bt,Q=alogbt,并說明理由;(2)利用你選擇的函數(shù),求蘆薈種植成本最低時的上市天數(shù)及最低種植成本.19.黃山市某鄉(xiāng)鎮(zhèn)響應“綠水青山就是金山銀山”的號召,因地制宜的將該鎮(zhèn)打造成“生態(tài)水果特色小鎮(zhèn)”.經(jīng)調研發(fā)現(xiàn):某珍稀水果樹的單株產(chǎn)量(單位:千克)與施用肥料(單位:千克)滿足關系:.肥料成本投入為元,其它成本投入(如培育管理,施肥等人工費)元.已知這種水果的市場售價為15元/千克,且銷路暢通供不應求,記該水果樹的單株利潤為(單位:元).(1)求的函數(shù)關系式;(2)當施用肥料為多少千克時,該水果樹的單株利潤最大?最大利潤是多少?20.已知函數(shù)(其中,)的圖象與軸的任意兩個相鄰交點間的距離為,且直線是函數(shù)圖象的一條對稱軸.(1)求的值;(2)求的單調遞減區(qū)間;(3)若,求的值域.21.如圖,在長方體中,,,是與的交點.求證:(1)平面(2)求與的所成角的正弦值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】∵f(x)是R上的奇函數(shù),∴,不妨設a>b,∴a﹣b>0,∴f(a)﹣f(b)>0,即f(a)>f(b)∴f(x)在R上單調遞增,∵f(x)為奇函數(shù),∴f(x﹣c)+f(x﹣c2)>0等價于f(x﹣c)>f(c2﹣x)∴不等式等價于x﹣c>c2﹣x,即c2+c<2x,∵存在實數(shù)使得不等式c2+c<2x成立,∴c2+c<6,即c2+c﹣6<0,解得,,故選A點睛:處理抽象不等式的常規(guī)方法:利用單調性及奇偶性,把函數(shù)值間的不等關系轉化為具體的自變量間的關系;同時注意區(qū)分恒成立問題與存在性問題.2、A【解析】先分別求出集合A和B,再利用交集定義和并集定義能求出結果【詳解】由2-x<2得x>-1,所以A={x|x>-1};由log2x>0得x>1,所以B={x|x>1}.所以A∩B={x|x>1}.故選A【點睛】本題考查交集、并集的求法及應用,考查指數(shù)對數(shù)不等式的解法,是基礎題3、D【解析】根據(jù)指數(shù)型函數(shù)和對數(shù)型函數(shù)單調性,判斷出正確選項.【詳解】由于,所以為上的遞減函數(shù),且過;為上的單調遞減函數(shù),且過,故只有D選項符合.故選:D.【點睛】本小題主要考查指數(shù)型函數(shù)、對數(shù)型函數(shù)單調性判斷,考查函數(shù)圖像的識別,屬于基礎題.4、C【解析】依次計算周期即可.【詳解】A選項:,錯誤;B選項:,錯誤;C選項:,正確;D選項:,錯誤.故選:C.5、B【解析】直接利用誘導公式化簡,再根據(jù)同角三角函數(shù)的基本關系代入計算可得;【詳解】解:因為,所以;故選:B6、C【解析】由函數(shù)圖象求出、、和的值,寫出的解析式,再根據(jù)圖象平移得出函數(shù)解析式【詳解】由函數(shù)圖象知,,,解得,所以,所以函數(shù);因為,所以,;解得,;又,所以;所以;將函數(shù)的圖象向右平移個單位長度后,得的圖象,即故選:7、D【解析】因為為圓心的圓與軸和軸分別相切于兩點,點分別在線段上,若,與圓相切,設切點為,所以,設,則,,故選D.考點:1、圓的幾何性質;2、數(shù)形結合思想及三角函數(shù)求最值【方法點睛】本題主要考查圓的幾何性質、數(shù)形結合思想及三角函數(shù)求最值,屬于難題.求最值的常見方法有①配方法:若函數(shù)為一元二次函數(shù),常采用配方法求函數(shù)求值域,其關鍵在于正確化成完全平方式,并且一定要先確定其定義域;②三角函數(shù)法:將問題轉化為三角函數(shù),利用三角函數(shù)的有界性求最值;③不等式法:借助于基本不等式求函數(shù)的值域,用不等式法求值域時,要注意基本不等式的使用條件“一正、二定、三相等”;④單調性法:首先確定函數(shù)的定義域,然后準確地找出其單調區(qū)間,最后再根據(jù)其單調性求凼數(shù)的值域,⑤圖像法:畫出函數(shù)圖像,根據(jù)圖像的最高和最低點求最值,本題主要應用方法②求的最小值的8、C【解析】根據(jù)冪函數(shù)的圖象和性質,可得a∈(0,1),再由指數(shù)函數(shù)和對數(shù)函數(shù)的圖象和性質,可得答案【詳解】由已知中函數(shù)y=xa(a∈R)的圖象可知:a∈(0,1),故函數(shù)y=a﹣x為增函數(shù)與y=logax為減函數(shù),故選C【點睛】本題考查知識點是冪函數(shù)的圖象和性質,指數(shù)函數(shù)和對數(shù)函數(shù)的圖象和性質,難度不大,屬于基礎題9、A【解析】,解,得,故選10、D【解析】先由條件求出參數(shù),得到在上的單調性,結合和函數(shù)為偶函數(shù)進行求解即可.【詳解】因為為偶函數(shù),所以,解得.在上單調遞減,且.因為,所以,解得或.故選:D二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】利用和的齊次分式,表示為表示的式子,即可求解.【詳解】.故答案為:12、##-0.75【解析】將代入函數(shù)解析式計算即可.【詳解】令,則,所以.故答案為:13、【解析】由,利用正弦的和角公式求解即可【詳解】原式,故答案為:【點睛】本題考查正弦的和角公式的應用,考查三角函數(shù)的化簡問題14、【解析】由直線與圓相切可得圓心到直線距離等與半徑,進而列式得出答案【詳解】由題意得,,解得【點睛】本題考查直線與圓的位置關系,屬于一般題15、1009【解析】推導出,當時,從而當時,,,由此能求出的值【詳解】∵函數(shù)滿足,∴,∵當時,∴當時,,,∴故答案為1009【點睛】本題主要考查函數(shù)值的求法,考查函數(shù)性質等基礎知識,考查運算求解能力,是基礎題16、【解析】如圖:則當時,即時,當時,原式點睛:本題主要考查了分段函數(shù)求最值問題,在定義域為動區(qū)間的情況下進行分類討論,先求出最大值與最小值的情況,然后計算,本題的關鍵是要注意數(shù)形結合,結合圖形來研究最值問題,本題有一定的難度三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)利用奇函數(shù)的必要條件,,求出,進而再驗證此時為奇函數(shù);(2),要用函數(shù)的單調性,將復合不等式轉化,所以考慮分離常數(shù),化簡為,判斷在是增函數(shù),可得不等式,轉化為求指數(shù)冪不等式,即可求解.【詳解】(1)函數(shù)是奇函數(shù),,,;(2),令,解得,化,在上增函數(shù),且,所以在是增函數(shù),等價于,,所以不等式的解集為.【點睛】本題考查函數(shù)的奇偶性求參數(shù),要注意應用奇偶性的必要條件減少計算量,但要進行驗證;考查函數(shù)的單調性應用及解不等式,考查計算、推理能力,屬于中檔題.18、(1)選用二次函數(shù)Q=at2+bt+c進行描述,理由見解析;(2)150(天),100(元/10kg).【解析】(1)由所提供的數(shù)據(jù)和函數(shù)的單調性得出應選函數(shù),再代入數(shù)據(jù)可得蘆薈種植成本Q與上市時間t的變化關系的函數(shù).(2)由二次函數(shù)的性質可以得出蘆薈種植成本最低成本.【詳解】(1)由所提供的數(shù)據(jù)可知,刻畫蘆薈種植成本Q與上市時間t的變化關系的函數(shù)不可能是常數(shù)函數(shù),若用函數(shù)Q=at+b,Q=a·bt,Q=alogbt中的任意一個來反映時都應有a≠0,且上述三個函數(shù)均為單調函數(shù),這與表格所提供的數(shù)據(jù)不符合,所以應選用二次函數(shù)Q=at2+bt+c進行描述.將表格所提供的三組數(shù)據(jù)分別代入函數(shù)Q=at2+bt+c,可得:,解得.所以,刻畫蘆薈種植成本Q與上市時間t變化關系的函數(shù).(2)當時,蘆薈種植成本最低為(元/10kg).【點睛】本題考查求回歸方程,以及回歸方程的應用,屬于中檔題.19、(1)f(2)當施用肥料為5千克時,該水果樹的單株利潤最大,最大利潤是750元【解析】(1)用銷售收入減去成本求得的函數(shù)關系式.(2)結合二次函數(shù)的性質、基本不等式來求得最大利潤以及此時對應的施肥量.小問1詳解】由已知得:,故fx【小問2詳解】若,則,此時,對稱軸為,故有最大值為.若,則,當且僅當,即時等號成立,此時,有最大值為,綜上有,有最大值為750,∴當施用肥料為5千克時,該水果樹的單株利潤最大,最大利潤是750元.20、(1)2(2)(3)【解析】小問1:先求解函數(shù)周期再求得參數(shù)的值;小問2:根據(jù)對稱軸求出的值,結合正弦函數(shù)單調減區(qū)間定義即可求解;小問3:因為,所以,結合正弦函數(shù)的值域即可求出結果【小問1詳解】因為函數(shù)的圖象與軸的任意兩個相鄰交點間的距離為,所以函數(shù)的周期,所以【小問2詳解】因為直線是函數(shù)圖象的一條對稱軸,所以,.又,所以所以函數(shù)的解析式是令,解得所以函數(shù)的單調遞減區(qū)間為【小問3詳解】因為

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論