版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2025屆安徽省三人行名校聯(lián)盟數(shù)學(xué)高二上期末綜合測試試題考生請注意:1.答題前請將考場、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.對于實(shí)數(shù)a,b,c,下列命題為真命題的是()A.若,則 B.若,則C.若,則 D.若,則2.雙曲線的光學(xué)性質(zhì)如下:如圖1,從雙曲線右焦點(diǎn)發(fā)出的光線經(jīng)雙曲線鏡面反射,反射光線的反向延長線經(jīng)過左焦點(diǎn).我國首先研制成功的“雙曲線新聞燈”,就是利用了雙曲線的這個(gè)光學(xué)性質(zhì).某“雙曲線燈”的軸截面是雙曲線一部分,如圖2,其方程為,分別為其左、右焦點(diǎn),若從右焦點(diǎn)發(fā)出的光線經(jīng)雙曲線上的點(diǎn)A和點(diǎn)B反射后(,A,B在同一直線上),滿足,則該雙曲線的離心率的平方為()A. B.C. D.3.實(shí)數(shù)且,,則連接,兩點(diǎn)的直線與圓C:的位置關(guān)系是()A.相離 B.相切C.相交 D.不能確定4.若拋物線的焦點(diǎn)為,則其標(biāo)準(zhǔn)方程為()A. B.C. D.5.在復(fù)平面內(nèi),復(fù)數(shù)對應(yīng)的點(diǎn)位于()A.第一象限 B.第二象限C.第三象限 D.第四象限6.一道數(shù)學(xué)試題,甲、乙兩位同學(xué)獨(dú)立完成,設(shè)命題是“甲同學(xué)解出試題”,命題是“乙同學(xué)解出試題”,則命題“至少一位同學(xué)解出試題”可表示為()A. B.C. D.7.設(shè)變量x,y滿足約束條件則目標(biāo)函數(shù)的最小值為()A.3 B.1C.0 D.﹣18.若數(shù)列為等差數(shù)列,數(shù)列為等比數(shù)列,則下列不等式一定成立的是()A. B.C. D.9.已知等比數(shù)列滿足,,則()A. B.C. D.10.下列曲線中,與雙曲線有相同漸近線是()A. B.C. D.11.雙曲線的焦點(diǎn)到漸近線的距離為()A. B.2C. D.12.、是橢圓的左、右焦點(diǎn),點(diǎn)在橢圓上,,過作的角平分線的垂線,垂足為,則的長為A.1 B.2C.3 D.4二、填空題:本題共4小題,每小題5分,共20分。13.已知等比數(shù)列中,則q=___14.某n重伯努利試驗(yàn)中,事件A發(fā)生的概率為p,事件A發(fā)生的次數(shù)記為X,,,則______15.方程的曲線的一條對稱軸是_______,的取值范圍是______.16.已知,用割線逼近切線的方法可以求得___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)設(shè)等比數(shù)列的前項(xiàng)和為,且()(1)求數(shù)列的通項(xiàng)公式;(2)在與之間插入個(gè)實(shí)數(shù),使這個(gè)數(shù)依次組成公差為的等差數(shù)列,設(shè)數(shù)列的前項(xiàng)和為,求證:18.(12分)在下列所給的三個(gè)條件中任選一個(gè),補(bǔ)充在下面的問題中,并加以解答①過(-1,2);②與直線平行;③與直線垂直問題:已知直線過點(diǎn)M(3,5),且______(1)求的方程;(2)若與圓相交于點(diǎn)A、B,求弦AB的長19.(12分)已知橢圓的左焦點(diǎn)為F,右頂點(diǎn)為,M是橢圓上一點(diǎn).軸且(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)直線與橢圓C交于E,H兩點(diǎn),點(diǎn)G在橢圓C上,且四邊形平行四邊形(其中O為坐標(biāo)原點(diǎn)),求20.(12分)已知拋物線的焦點(diǎn)與曲線的右焦點(diǎn)重合.(1)求拋物線的標(biāo)準(zhǔn)方程;(2)若拋物線上的點(diǎn)滿足,求點(diǎn)的坐標(biāo).21.(12分)已知橢圓的離心率,左、右焦點(diǎn)分別為、,點(diǎn)在橢圓上,過的直線交橢圓于、兩點(diǎn).(1)求橢圓的標(biāo)準(zhǔn)方程;(2)求的面積的最大值.22.(10分)已知數(shù)列的通項(xiàng)公式為:,其中.記為數(shù)列的前項(xiàng)和(1)求,;(2)數(shù)列的通項(xiàng)公式為,求的前項(xiàng)和
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】判斷不等式的真假,就是要考慮在不等式的變形過程中是否遵守不等式變形的規(guī)則.【詳解】若,令,,,,,故A錯(cuò)誤;若,令c=0,則,故B錯(cuò)誤;若,令a=-1,b=-2,,,故C錯(cuò)誤;∵,故,根據(jù)不等式運(yùn)算規(guī)則,在不等式的兩邊同時(shí)乘以或除以一個(gè)正數(shù),不等式的方向不變,故D正確.故選:D.2、D【解析】設(shè),根據(jù)題意可得,由雙曲線定義得、,進(jìn)而求出(用表示),然后在中,應(yīng)用勾股定理得出關(guān)系,求得離心率【詳解】易知共線,共線,如圖,設(shè),則.因?yàn)椋?,則,則,又因?yàn)椋?,則,在中,,即,所以.故選:D3、B【解析】由題意知,m,n是方程的根,再根據(jù)兩點(diǎn)式求出直線方程,利用圓心到直線的距離與半徑之間的關(guān)系即可求解.【詳解】由題意知,m,n是方程的根,,,過,兩點(diǎn)的直線方程為:,圓心到直線的距離為:,故直線和圓相切,故選:B【點(diǎn)睛】本題考查了直線與圓的位置關(guān)系,考查了計(jì)算求解能力,屬于基礎(chǔ)題.4、D【解析】由題意設(shè)出拋物線的標(biāo)準(zhǔn)方程,再利用焦點(diǎn)為建立,解方程即可.【詳解】由題意,設(shè)拋物線標(biāo)準(zhǔn)方程為,所以,解得,所以拋物線標(biāo)準(zhǔn)方程為.故選:D5、D【解析】根據(jù)復(fù)數(shù)在復(fù)平面內(nèi)的坐標(biāo)表示可得答案.【詳解】解:由題意得:在復(fù)平面上對應(yīng)的點(diǎn)為,該點(diǎn)在第四象限.故選:D6、D【解析】根據(jù)“或命題”的定義即可求得答案.【詳解】“至少一位同學(xué)解出試題”的意思是“甲同學(xué)解出試題,或乙同學(xué)解出試題”.故選:D.7、C【解析】線性規(guī)劃問題,作出可行域后,根據(jù)幾何意義求解【詳解】作出可行域如圖所示,,數(shù)形結(jié)合知過時(shí)取最小值故選:C8、D【解析】對選項(xiàng)A,令即可檢驗(yàn);對選項(xiàng)B,令即可檢驗(yàn);對選項(xiàng)C,令即可檢驗(yàn);對選項(xiàng)D,設(shè)出等差數(shù)列的首項(xiàng)和公比,然后作差即可.【詳解】若,則可得:,故選項(xiàng)A錯(cuò)誤;若,則可得:,故選項(xiàng)B錯(cuò)誤;若,則可得:,故選項(xiàng)C錯(cuò)誤;不妨設(shè)的首項(xiàng)為,公差為,則有:則有:,故選項(xiàng)D正確故選:D9、D【解析】由已知條件求出公比的平方,然后利用即可求解.【詳解】解:設(shè)等比數(shù)列的公比為,因?yàn)榈缺葦?shù)列滿足,,所以,所以,故選:D.10、B【解析】求出已知雙曲線的漸近線方程,逐一驗(yàn)證即可.【詳解】雙曲線的漸近線方程為,而雙曲線的漸近線方程為,雙曲線的漸近線方程為,雙曲線的漸近線方程為,雙曲線的漸近線方程為.故選:B11、A【解析】根據(jù)點(diǎn)到直線距離公式進(jìn)行求解即可.【詳解】由雙曲線的標(biāo)準(zhǔn)方程可知:,該雙曲線的焦點(diǎn)坐標(biāo)為:,雙曲線的漸近線方程為:,所以焦點(diǎn)到漸近線的距離為:,故選:A12、A【解析】延長交延長線于N,則選:A.【點(diǎn)睛】涉及兩焦點(diǎn)問題,往往利用橢圓定義進(jìn)行轉(zhuǎn)化研究,而角平分線性質(zhì)可轉(zhuǎn)化到焦半徑問題,兩者切入點(diǎn)為橢圓定義.二、填空題:本題共4小題,每小題5分,共20分。13、3【解析】根據(jù)等比數(shù)列的性質(zhì)求得,再根據(jù)等比數(shù)列的通項(xiàng)公式求得答案.【詳解】等比數(shù)列中,故,,所以,故答案為:314、##0.2【解析】根據(jù)二項(xiàng)分布的均值和方差的計(jì)算公式可求解【詳解】依題意得X服從二項(xiàng)分布,則,解得,故答案為:15、①.x軸或直線②.【解析】根據(jù)給定條件分析方程的性質(zhì)即可求得對稱軸及x的取值范圍作答.【詳解】方程中,因,則曲線關(guān)于x軸對稱,又,解得,此時(shí)曲線與都關(guān)于直線對稱,曲線的對稱軸是x軸或直線,的取值范圍是.故答案為:x軸或直線;16、【解析】根據(jù)導(dǎo)數(shù)的定義直接計(jì)算即可【詳解】因?yàn)椋?,故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)見解析【解析】(1)由兩式相減得,所以()因?yàn)榈缺龋?,所以,所以故?)由題設(shè)得,所以,所以,則,所以18、(1)(2)【解析】(1)可依次根據(jù)直線方程的點(diǎn)斜式、“兩直線平行,斜率相等”、“兩直線垂直,斜率相乘為-1”求直線l的方程;(2)利用垂徑定理即可求圓的弦長.【小問1詳解】選條件①:∵直線過點(diǎn)(3,5)及(-1,2),∴直線的斜率為,依題意,直線的方程為,即;選條件②:∵直線的斜率為,直線與直線平行,∴直線的斜率為,依題意,直線的方程為;即;選條件③:∵直線的斜率為,直線與直線垂直,∴直線的斜率為,依題意,直線的方程為,即;【小問2詳解】圓心為(2,3),半徑為2,圓心到直線的距離為∴19、(1)(2)【解析】(1)根據(jù)橢圓的簡單幾何性質(zhì)即可求出;(2)設(shè),聯(lián)立與橢圓方程,求出,再根據(jù)平行四邊形的性質(zhì)求出點(diǎn)的坐標(biāo),然后由點(diǎn)G在橢圓C上,可求出,從而可得【小問1詳解】∵橢圓C的右頂點(diǎn)為,∴,∵軸,且,∴,∴,所以橢圓C的標(biāo)準(zhǔn)方程為【小問2詳解】設(shè),將直線代入,消去y并整理得,由,得.(*)由根與系數(shù)的關(guān)系可得,∴,∵四邊形為平行四邊形,∴,得,將G點(diǎn)坐標(biāo)代人橢圓C的方程得,滿足(*)式∴20、(1);(2)或.【解析】(1)求出雙曲線的右焦點(diǎn)坐標(biāo),可求出的值,即可得出拋物線的標(biāo)準(zhǔn)方程;(2)設(shè)點(diǎn),由拋物線的定義求出的值,代入拋物線的方程可求得的值,即可得出點(diǎn)的坐標(biāo).【詳解】(1)由雙曲線方程可得,,所以,解得.則曲線的右焦點(diǎn)為,所以,.因此,拋物線的標(biāo)準(zhǔn)方程為;(2)設(shè),由拋物線的定義及已知可得,解得.代入拋物線方程可得,解得,所以點(diǎn)的坐標(biāo)為或.21、(1)(2)【解析】(1)利用橢圓的離心率、點(diǎn)在橢圓上以及得到的方程組,進(jìn)而得到橢圓的標(biāo)準(zhǔn)方程;(2)設(shè)出直線方程,聯(lián)立直線和橢圓方程,得到關(guān)于的一元二次方程,利用根與系數(shù)的關(guān)系和三角形的面積公式得到三角形的面積,再利用基本不等式求其最值.【小問1詳解】解:由題可
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 公司使用合同范例
- 承包建墓合同范例
- 煤礦合作合同范例
- 矩形清水池課程設(shè)計(jì)
- 米食文化研學(xué)課程設(shè)計(jì)
- 買柴油合同范例
- 汽車活動(dòng)贊助合同范例
- 夫妻雙方共同借款合同范例
- 木材原木采購合同范例
- 技術(shù)專利共有合同范例
- 項(xiàng)目管理人員三級(jí)安全教育記錄表
- 研究生英語綜合教程Unit-答案 1
- 建筑工程施工質(zhì)量驗(yàn)收統(tǒng)一標(biāo)準(zhǔn)培訓(xùn)教程課件
- 海南省普通中小學(xué)教師工作量指導(dǎo)標(biāo)準(zhǔn)
- 微機(jī)保護(hù)裝置改造施工方案
- 胸腔穿刺及引流
- 中藥香囊制作(中藥學(xué)基礎(chǔ)課件)
- 煤油(火油)的理化性質(zhì)及危險(xiǎn)特性表MSDS
- 鍋爐延期檢驗(yàn)申請書
- 養(yǎng)老機(jī)構(gòu)安全風(fēng)險(xiǎn)風(fēng)險(xiǎn)分級(jí)管控清單
- 液位儀安全操作規(guī)程
評(píng)論
0/150
提交評(píng)論