四川省成都市雙流中學2025屆高二數學第一學期期末預測試題含解析_第1頁
四川省成都市雙流中學2025屆高二數學第一學期期末預測試題含解析_第2頁
四川省成都市雙流中學2025屆高二數學第一學期期末預測試題含解析_第3頁
四川省成都市雙流中學2025屆高二數學第一學期期末預測試題含解析_第4頁
四川省成都市雙流中學2025屆高二數學第一學期期末預測試題含解析_第5頁
已閱讀5頁,還剩9頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

四川省成都市雙流中學2025屆高二數學第一學期期末預測試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設、分別是橢圓()的左、右焦點,過的直線l與橢圓E相交于A、B兩點,且,則的長為()A. B.1C. D.2.已知拋物線,則拋物線的焦點到其準線的距離為()A. B.C. D.3.已知,,若,則()A.9 B.6C.5 D.34.下圖是一個“雙曲狹縫”模型,直桿沿著與它不平行也不相交的軸旋轉時形成雙曲面,雙曲面的邊緣為雙曲線.已知該模型左、右兩側的兩段曲線(曲線AB與曲線CD)所在的雙曲線離心率為2,曲線AB與曲線CD中間最窄處間的距離為10cm,點A與點C,點B與點D均關于該雙曲線的對稱中心對稱,且|AB|=30cm,則|AD|=()A.10cm B.20cmC.25cm D.30cm5.(2017新課標全國卷Ⅲ文科)已知橢圓C:的左、右頂點分別為A1,A2,且以線段A1A2為直徑的圓與直線相切,則C的離心率為A. B.C. D.6.已知雙曲線的左右焦點分別為、,過點的直線交雙曲線右支于A、B兩點,若是等腰三角形,且,則的周長為()A. B.C. D.7.函數在和處的導數的大小關系是()A. B.C. D.不能確定8.某地政府為落實疫情防控常態(tài)化,不定時從當地780名公務員中,采用系統(tǒng)抽樣的方法抽取30人做核酸檢測.把這批公務員按001到780進行編號,若054號被抽中,則下列編號也被抽中的是()A.076 B.104C.390 D.5229.已知點A、是拋物線:上的兩點,且線段過拋物線的焦點,若的中點到軸的距離為3,則()A.3 B.4C.6 D.810.執(zhí)行下圖所示的程序框圖,則輸出的值為()A.5 B.6C.7 D.811.已知橢圓C:的一個焦點為(0,-2),則k的值為()A.5 B.3C.9 D.2512.如果橢圓的弦被點平分,那么這條弦所在的直線的方程是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.由曲線圍成的圖形的面積為_______________14.已知數列滿足,,若為等差數列,則___________,若,則數列的前項和為___________.15.(建三江)函數在處取得極小值,則=___16.已知橢圓C:,點M與C的焦點不重合,若M關于C的焦點的對稱點分別為A,B,線段MN的中點在C上,則_________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知數列的前n項和為,,且(1)求數列的通項公式;(2)令,記數列的前n項和為,求證:18.(12分)在中,角A,B,C所對的邊分別為a,b,c,且,,.(1)求角B;(2)求a,c的值及的面積.19.(12分)設命題p:,命題q:關于x的方程無實根.(1)若p為真命題,求實數m的取值范圍;(2)若為假命題,為真命題,求實數m的取值范圍20.(12分)在平面直角坐標系xOy中,圓O以原點為圓心,且經過點.(1)求圓O的方程;(2)若直線與圓O交于兩點A,B,求弦長.21.(12分)已知橢圓的離心率為,直線與橢圓C相切于點(1)求橢圓C方程;(2)已知直線與橢圓C交于不同的兩點M,N,與直線交于點Q(P,Q,M,N均不重合),記的斜率分別為,若①求△面積的范圍,②證明:為定值22.(10分)已知函數,其中常數,(1)求單調區(qū)間;(2)若且對任意,都有,證明:方程有且只有兩個實根

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】由橢圓的定義得:,,結合條件可得,即可得答案.【詳解】由橢圓的定義得:,,又,,所以,由橢圓知,所以.故選:C2、D【解析】將拋物線方程化為標準方程,由此確定的值即可.【詳解】由可得拋物線標準方程為:,,拋物線的焦點到其準線的距離為.故選:D.3、D【解析】根據空間向量垂直的坐標表示即可求解.【詳解】.故選:D.4、B【解析】由離心率求出雙曲線方程,由對稱性設出點A,B,D坐標,求出坐標,求出答案.【詳解】由題意得:,解得:,因為離心率,所以,,故雙曲線方程為,設,則,,則,所以,則,解得:,故.故選:B5、A【解析】以線段為直徑的圓的圓心為坐標原點,半徑為,圓的方程為,直線與圓相切,所以圓心到直線的距離等于半徑,即,整理可得,即即,從而,則橢圓的離心率,故選A.【名師點睛】解決橢圓和雙曲線的離心率的求值及取值范圍問題,其關鍵就是確立一個關于的方程或不等式,再根據的關系消掉得到的關系式,而建立關于的方程或不等式,要充分利用橢圓和雙曲線的幾何性質、點的坐標的范圍等.6、A【解析】設,.根據雙曲線的定義和等腰三角形可得,再利用余弦定理可求得,從而可得的周長.【詳解】由雙曲線可得設,.則,,所以,因為是等腰三角形,且,所以,即,所以,所以,,在中,由余弦定理得,即,所以,解得,的周長故選:A【點睛】關鍵點點睛:根據雙曲線的定義求解是解題關鍵.7、A【解析】求出函數導數即可比較.【詳解】,,所以,即.故選:A.8、D【解析】根據題意,求得組數與抽中編號的對應關系,即可判斷和選擇.【詳解】從780名公務員中,采用系統(tǒng)抽樣的方法抽取30人做核酸檢測,故需要分為組,每組人,設第組抽中的編號為,設,由題可知:,故可得,故可得.當時,.故選:.9、D【解析】直接根據拋物線焦點弦長公式以及中點坐標公式求結果【詳解】設,,則的中點到軸的距離為,則故選:D10、C【解析】直接按照程序框圖運行即可得正確答案.【詳解】當時,不成立,時,不成立,時,不成立,時,不成立,時,不成立,時,不成立,時,不成立,時,成立,輸出的值為,故選:C.11、A【解析】由題意可得焦點在軸上,由,可得k的值.【詳解】∵橢圓的一個焦點是,∴,∴,故選:A12、B【解析】設該弦所在直線與橢圓的兩個交點分別為,,則,利用點差法可得答案.【詳解】設該弦所在直線與橢圓的兩個交點分別為,,則因為,兩式相減可得,,即由中點公式可得,所以,即,所以AB所在直線方程為,即故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】當時,曲線表示的圖形為以為圓心,以為半徑的圓在第一象限的部分,所以面積為,根據對稱性,可知由曲線圍成的圖形的面積為考點:本小題主要考查曲線表示的平面圖形的面積的求法,考查學生分類討論思想的運用和運算求解能力.點評:解決此題的關鍵是看出所求圖形在四個象限內是相同的,然后求出在一個象限內的圖形的面積即可解決問題.14、①.##②.【解析】利用遞推關系式,結合等差數列通項公式可求得公差,進而得到;利用遞推關系式可知數列的奇數項和偶數項分別成等差數列,采用裂項相消的方法可求得前項和.【詳解】由得:,解得:;為等差數列,設其公差為,則,解得:,;由知:數列的奇數項是以為首項,為公差的等差數列;偶數項是以為首項,為公差的等差數列;,又,,數列的前項和,.故答案為:;.【點睛】關鍵點點睛:本題考查根據數列遞推關系求解數列中的項、裂項相消法求和的問題;解題關鍵是能夠根據遞推關系式得到數列的奇數項和偶數項分別成等差數列,由此可通過裂項相消的方法求得所求數列的和.15、【解析】由,令,解得或,且時,;時,;時,,所以當時,函數取得極小值考點:導數在函數中的應用;極值的條件16、【解析】設M,N的中點坐標為P,,則;由于,化簡可得,根據橢圓的定義==6,所以12.考點:1.橢圓的定義;2.兩點距離公式.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)證明見解析【解析】(1)依題意可得,即可得到是以為首項,為公比的等比數列,從而求出數列的通項公式;(2)由(1)可得,利用錯位相減法求和,即可證明;【小問1詳解】解:因為,,所以,所以是以為首項,為公比的等比數列,所以,所以;【小問2詳解】解:由(1)可知,所以①,所以②;①②得所以;18、(1)(2),,【解析】(1)利用正弦定理化簡已知條件,求得,進而求得.(2)利用余弦定理求得和,由此求得三角形的面積.【小問1詳解】由于,∴.又∵,∴.∴.【小問2詳解】∵,且,,,∴,解得或(舍).∴,.∴.19、(1)(2)【解析】(1)解一元二次不等式,即可求得當為真命題時的取值范圍;(2)先求得命題為真命題時的取值范圍.由為假命題,為真命題可知,兩命題一真一假.分類討論,即可求得的取值范圍.【詳解】(1)當為真命題時,解不等式可得;(2)當為真命題時,由,可得,∵為假命題,為真命題,∴,兩命題一真一假,∴或,解得或,∴m的取值范圍是.【點睛】本題考查了根據命題真假求參數的取值范圍,由復合命題真假判斷命題真假,并求參數的取值范圍,屬于基礎題.20、(1)(2)【解析】(1)根據兩點距離公式即可求半徑,進而得圓方程;(2)根據直線與圓的弦長公式即可求解【小問1詳解】由,所以圓O的方程為;【小問2詳解】由點O到直線的距離為所以弦長21、(1);(2)①;②證明見解析.【解析】(1)根據橢圓離心率和橢圓經過的點建立方程組,求解方程組可得橢圓的方程;(2)先根據相切求出直線的斜率,結合可得,進而應用弦長公式、點線距離公式及三角形面積公式求△面積的范圍,再逐個求解,,然后可證結論.【小問1詳解】由題意,解得,故橢圓C的方程為.【小問2詳解】設直線為,聯(lián)立得:,因為直線與橢圓C相切,則判別式,即,整理得,∴,故直線為,又,可得,設直線為,聯(lián)立方程組,解得,故Q為,聯(lián)立方程組,化簡得設,由得:,且,①,到直線的距離為,∴,令,∴.②由上,故,于是為定值.【點睛】直線與橢圓的相切問題一般是聯(lián)立方程,結合判別式為零求解;定值問題的求解一般結合目標式中的項,逐個求解,代入驗證即可.22、(1)答案不唯一,具體見解析(2)證明見解析【解析】(1)求出函數的導數,談論參

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論