版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
第=page11頁,共=sectionpages11頁2024-2025學年廣東省深圳第二外國語學校高三(上)第一次月考數(shù)學試卷一、單選題:本題共8小題,每小題5分,共40分。在每小題給出的選項中,只有一項是符合題目要求的。1.設復數(shù)z滿足z(1+i)=2(i為虛數(shù)單位),則|z|=(
)A.1 B.2 C.2 D.2.命題“?x∈R,ex+1>0”的否定是(
)A.?x0∈R,ex0+1≤0 B.?x∈R,ex+1≤0
C.3.下列函數(shù)中,是偶函數(shù)且在(0,+∞)上單調遞減的是(
)A.f(x)=x2?|x| B.f(x)=1x24.設a=0.42,b=log0.43,c=40.3,則a,A.a<b<c B.b<a<c C.c<b<a D.c<a<b5.函數(shù)y=x2ln|x|A. B.
C. D.6.設函數(shù)f(x)=log12(x2?ax+3)在A.[72,4] B.(?∞,72]7.若正數(shù)a,b滿足ab=a+b+3,則a+b的取值范圍是(
)A.[6,+∞) B.[9,+∞) C.(0,6] D.(0,9)8.設函數(shù)f(x)=?x2+4x,x≤4,|log2(x?4)|,x>4,若關于x的方程f(x)=t有四個實根x1,x2A.455 B.23 C.472 二、多選題:本題共3小題,共18分。在每小題給出的選項中,有多項符合題目要求。9.若函數(shù)f(x)=13x3A.f′(1)=1 B.f(x)有兩個極值點
C.曲線y=f(x)的切線的斜率可以為?2 D.點(1,1)是曲線y=f(x)的對稱中心10.已知關于x的不等式ax2+bx+c>0的解集為(?∞,?2)∪(3,+∞),則下列選項中正確的是A.a<0
B.不等式bx+c>0的解集是{x|x<?6}
C.a+b+c>0
D.不等式cx211.已知函數(shù)f(x),g(x)在R上的導函數(shù)分別為f′(x),g′(x),若f(x+2)為偶函數(shù),y=g(x+1)?2是奇函數(shù),且f(3?x)+g(x?1)=2,則下列結論正確的是(
)A.f′(2022)=0 B.g(2023)=0
C.f(x)是R上的奇函數(shù) D.g′(x)是R上的奇函數(shù)三、填空題:本題共3小題,每小題5分,共15分。12.已知冪函數(shù)f(x)=(m2?6m+9)xm滿足f′(1)=2,則13.已知正數(shù)a,b滿足a+b=2,則1a+114.已知函數(shù)y=x2?2x+2,x≥0x+ax+3a,x<0四、解答題:本題共5小題,共77分。解答應寫出文字說明,證明過程或演算步驟。15.(本小題15分)
已知函數(shù)f(x)=2x+a2x+1是奇函數(shù).
(1)求a的值;
(2)16.(本小題13分)
已知正項等比數(shù)列{an}中,Sn為{an}的前n項和,anSn=2n(2n+1?2).
(1)17.(本小題15分)
在銳角△ABC中,角A,B,C所對的邊分別為a,b,c,已知ac=a2+b2?c2b2,且a≠c.
(1)求證:B=2C;
(2)若18.(本小題17分)
如圖,在三棱柱ABC?A1B1C1中,平面AA1C1C⊥平面ABC,AB=AC=BC=AA1=2,A1B=6.
19.(本小題17分)
設A是正整數(shù)集的一個非空子集,如果對于任意x∈A,都有x?1∈A或x+1∈A,則稱A為自鄰集.記集合An={1,2?…,n}(n>2,n∈N)的所有子集中的自鄰集的個數(shù)為an.
(1)直接寫出A4的所有自鄰集;
(2)若n為偶數(shù)且n>6,求證:An的所有含5個元素的子集中,自鄰集的個數(shù)是偶數(shù);
(3)若n≥4,求證:參考答案1.B
2.A
3.B
4.B
5.D
6.B
7.A
8.B
9.BD
10.BD
11.AD
12.4
13.2
14.(?∞,0)∪[1,+∞)
15.解:(1)因為f(x)=2x+a2x+1,
所以f(?x)=2?x+a2?x+1=1+a?2x1+2x,
因為f(x)為奇函數(shù),
所以f(?x)+f(x)=1+a?2x1+2x+a+2x1+2x=(1+a)(1+2x)1+2x=a+1=0,
16.解:(1)正項等比數(shù)列{an}中,Sn為{an}的前n項和,
由anSn=2n(2n+1?2),可得n=1時,a1S1=a12=2×(4?2)=4,
解得a1=2;
n=2時,a2S2=17.解:(1)證明:因為ac=a2+b2?c2b2,
所以由余弦定理可得ac=2abcosCb2=2acosCb,即b=2ccosC,
所以由正弦定理可得sinB=2sinCcosC=sin2C,
所以在△ABC中,B=2C或B+2C=π,
又因為a≠c,
所以A≠C,
所以B=2C;
(2)在△BCD中,由正弦定理可得asin∠BDC=BDsinC,a=12,
即12sin∠BDC=BDsinC,
18.(1)證明:因為D為AC中點,且AB=AC=BC=2,
所以在△ABC中,有BD⊥AC,且BD=3,
又平面ACC1A1⊥平面ABC,且平面ACC1A1∩平面ABC=AC,
所以BD⊥平面ACC1A1,
又A1D?平面ACC1A1,則BD⊥A1D,
由A1B=6,BD=3,得A1D=3,
因為AD=1,AA1=2,A1D=3,
所以由勾股定理,得AD⊥A1D,
又AC⊥BD,A1D∩BD=D,
所以AC⊥平面A1DB;
(2)解:如圖所示,以D為原點,建立空間直角坐標系D?xyz,
可得A(1,0,0),A1(0,0,3),B(0,3,0),
19.解:(1)A4的所有自鄰集有:{1,2,3,4},{1,2,3},{2,3,4},{1,2},{2,3},{3,4}.
證明:(2)對于An的含5個元素的自鄰集B={x1,x2,x3,x4,x5},
不妨設x1<x2<x3<x4<x5.
因為對于?xi∈B,都有xi?1∈B
或xi+1∈B,i=1,2,3,4,5,
所以x2=x1+1,x4=x5?1,x3=x2+1
或x3=x4?1.
對于集合C={n+1?x5,n+1?x4,n+1?x3,n+1?x2,n+1?x1},
因為1≤x1<x2<x3<x4<x5≤n,所以1≤n+1?xi≤n,i=1,2,3,4,5,
n+1?x5<n+1?x4<n+1?x3<n+1?x2<n+1?x1,
所以C?An.
因為x2=x1+1,x4=x5?1,x3=x2+1
或x3=x4?1.
所以
n+1?x2=(n+1?x1)?1,n+1?x4=(,n
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 生態(tài)農業(yè)發(fā)展傳統(tǒng)與現(xiàn)代技術的完美結合
- 冷凍飲品企業(yè)的產品研發(fā)項目管理考核試卷
- 固體廢物處理與固廢處理行業(yè)政策法規(guī)解讀考核試卷
- 農機配件的激光切割技術考核試卷
- 包裝設備潤滑系統(tǒng)與油脂選用考核試卷
- 電廠水處理設備的智能化管理與維護
- 構建科技防火體系確保商業(yè)綜合體安全運營
- 2025-2030年古典戲曲足浴聽曲閣企業(yè)制定與實施新質生產力戰(zhàn)略研究報告
- 2025-2030年微波吸收復合材料企業(yè)制定與實施新質生產力戰(zhàn)略研究報告
- 2025-2030年戶外露營裝備創(chuàng)新企業(yè)制定與實施新質生產力戰(zhàn)略研究報告
- 子宮瘢痕處妊娠-課件
- 煙花爆竹合作協(xié)議書模板(5篇)
- 老年社會工作課件
- 最新記24小時出入量、護理文書書寫規(guī)范課件
- DB23T 2714-2020 農村生活垃圾非焚燒低溫處理設施大氣污染物排放標準
- 【人教版】免疫系統(tǒng)的組成和功能課件1
- 建標 198-2022 城市污水處理工程項目建設標準
- 船舶輪機英語_專業(yè)用語
- 基層法律服務所設立登記表
- 第四代建筑懸挑陽臺腳手架施工
- 三相四線及三相三線錯誤接線向量圖研究分析及更正
評論
0/150
提交評論