版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025屆北京市牛山一中高二數(shù)學(xué)第一學(xué)期期末調(diào)研試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若雙曲線的離心率為3,則的最小值為()A. B.1C. D.22.雙曲線的左頂點(diǎn)為,右焦點(diǎn),若直線與該雙曲線交于、兩點(diǎn),為等腰直角三角形,則該雙曲線離心率為()A. B.C. D.3.運(yùn)行如圖所示程序后,輸出的結(jié)果為()A.15 B.17C.19 D.214.已知方程表示焦點(diǎn)在軸上的橢圓,則實(shí)數(shù)的取值范圍是()A. B.C. D.5.已知橢圓的中心為,一個(gè)焦點(diǎn)為,在上,若是正三角形,則的離心率為()A. B.C. D.6.將一枚骰子連續(xù)拋兩次,得到正面朝上的點(diǎn)數(shù)分別為、,記事件A為“為偶數(shù)”,事件B為“”,則的值為()A. B.C. D.7.若直線l與橢圓交于點(diǎn)A、B,線段的中點(diǎn)為,則直線l的方程為()A. B.C. D.8.在的展開式中,的系數(shù)為()A. B.5C. D.109.若x,y滿足約束條件,則的最大值為()A.1 B.0C.?1 D.?310.拋物線的焦點(diǎn)為F,點(diǎn)為該拋物線上的動(dòng)點(diǎn),點(diǎn)A是拋物線的準(zhǔn)線與坐標(biāo)軸的交點(diǎn),則的最大值是()A.2 B.C. D.11.已知雙曲線C:(a>0,b>0),斜率為的直線與雙曲線交于不同的兩點(diǎn),且線段的中點(diǎn)為P(2,4),則雙曲線的漸近線方程為()A. B.C. D.12.橢圓的()A.焦點(diǎn)在x軸上,長(zhǎng)軸長(zhǎng)為2 B.焦點(diǎn)在y軸上,長(zhǎng)軸長(zhǎng)為2C.焦點(diǎn)在x軸上,長(zhǎng)軸長(zhǎng)為 D.焦點(diǎn)在y軸上,長(zhǎng)軸長(zhǎng)為二、填空題:本題共4小題,每小題5分,共20分。13.如圖,在長(zhǎng)方體ABCD—A1B1C1D1中,AB=3,AD=3,AA1=4,P是側(cè)面BCC1B1上的動(dòng)點(diǎn),且AP⊥BD1,記點(diǎn)P到平面ABCD的距離為d,則d的最大值為____________.14.已知過橢圓上的動(dòng)點(diǎn)作圓(為圓心):的兩條切線,切點(diǎn)分別為,若的最小值為,則橢圓的離心率為______15.若命題“,使得”為假命題,則實(shí)數(shù)a的取值范圍是___________16.若函數(shù)在x=1處的切線與直線y=kx平行,則實(shí)數(shù)k=___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,直三棱柱中,,,是棱的中點(diǎn),(1)求異面直線所成角的余弦值;(2)求二面角的余弦值18.(12分)在平面直角坐標(biāo)系xOy中,已知橢圓的離心率為,且短軸長(zhǎng)為2.(1)求橢圓C的方程;(2)設(shè)橢圓C的上頂點(diǎn)為B,右焦點(diǎn)為F,直線l與橢圓交于M,N兩點(diǎn),問是否存在直線l,使得F為的垂心,若存在,求出直線l的方程;若不存在,說明理由.19.(12分)在平面直角坐標(biāo)系中,已知直線(t為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求曲線的直角坐標(biāo)方程;(2)設(shè)點(diǎn)的直角坐標(biāo)為,直線與曲線的交點(diǎn)為,求的值.20.(12分)證明:是無理數(shù).(我們知道任意一個(gè)有理數(shù)都可以寫成形如(m,n互質(zhì),)的形式)21.(12分)如圖,在直三棱柱中,平面?zhèn)让?,?(1)求證:;(2)若直線與平面所成的角為,請(qǐng)問在線段上是否存在點(diǎn),使得二面角的大小為,若存在請(qǐng)求出的位置,不存在請(qǐng)說明理由.22.(10分)已知數(shù)列是公比為正數(shù)的等比數(shù)列,且,.(1)求數(shù)列的通項(xiàng)公式;(2)若,求數(shù)列的前項(xiàng)和.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】由雙曲線的離心率為3和,求得,化簡(jiǎn),結(jié)合基本不等式,即可求解.【詳解】由題意,雙曲線的離心率為3,即,即,又由,可得,所以,當(dāng)且僅當(dāng),即時(shí),“”成立.故選:D【點(diǎn)睛】使用基本不等式解答問題的策略:1、利用基本不等式求最值時(shí),要注意三點(diǎn):一是各項(xiàng)為正;二是尋求定值;三是考慮等號(hào)成立的條件;2、若多次使用基本不等式時(shí),容易忽視等號(hào)的條件的一致性,導(dǎo)致錯(cuò)解;3、巧用“拆”“拼”“湊”:在使用基本不等式時(shí),要特別注意“拆”“拼”“湊”等技巧,使其滿足基本不等式中的“正、定、等”的條件.2、A【解析】求出,分析可得,可得出關(guān)于、、的齊次等式,由此可求得該雙曲線的離心率的值.【詳解】聯(lián)立,可得,則,易知點(diǎn)、關(guān)于軸對(duì)稱,且為線段的中點(diǎn),則,又因?yàn)闉榈妊苯侨切?,所以,,即,即,所以,,可得,因此,該雙曲線的離心率為.故選:A.3、D【解析】根據(jù)給出的循環(huán)程序進(jìn)行求解,直到滿足,輸出.【詳解】,,,,,,,,,,,,所以.故選:D4、D【解析】根據(jù)已知條件可得出關(guān)于實(shí)數(shù)的不等式組,由此可解得實(shí)數(shù)的取值范圍.【詳解】因?yàn)榉匠瘫硎窘裹c(diǎn)在軸上的橢圓,則,解得.故選:D.5、D【解析】根據(jù)是正三角形可得的坐標(biāo),代入方程后可求離心率.【詳解】不失一般性,可設(shè)橢圓的方程為:,為半焦距,為右焦點(diǎn),因?yàn)榍?,故,故,,整理得到,故,故選:D.6、B【解析】利用條件概率的公式求解即可.【詳解】根據(jù)題意可知,若事件為“為偶數(shù)”發(fā)生,則、兩個(gè)數(shù)均為奇數(shù)或均為偶數(shù),其中基本事件數(shù)為,,,,,,,,,,,,,,,,,,一共個(gè)基本事件,∴,而A、同時(shí)發(fā)生,基本事件有當(dāng)一共有9個(gè)基本事件,∴,則在事件A發(fā)生的情況下,發(fā)生的概率為,故選:7、A【解析】用點(diǎn)差法即可獲解【詳解】設(shè).則兩式相減得即因?yàn)?線段AB的中點(diǎn)為,所以所以所以直線的方程為,即故選:A8、C【解析】首先寫出展開式的通項(xiàng)公式,然后結(jié)合通項(xiàng)公式確定的系數(shù)即可.【詳解】展開式的通項(xiàng)公式為:,令可得:,則的系數(shù)為:.故選:C.【點(diǎn)睛】二項(xiàng)式定理的核心是通項(xiàng)公式,求解此類問題可以分兩步完成:第一步根據(jù)所給出的條件(特定項(xiàng))和通項(xiàng)公式,建立方程來確定指數(shù)(求解時(shí)要注意二項(xiàng)式系數(shù)中n和r的隱含條件,即n,r均為非負(fù)整數(shù),且n≥r,如常數(shù)項(xiàng)指數(shù)為零、有理項(xiàng)指數(shù)為整數(shù)等);第二步是根據(jù)所求的指數(shù),再求所求解的項(xiàng)9、B【解析】先畫出可行域,由,得,作出直線,過點(diǎn)時(shí),取得最大值,求出點(diǎn)的坐標(biāo)代入目標(biāo)函數(shù)中可得答案【詳解】不等式組表示的可行域如圖所示,由,得,作出直線,過點(diǎn)時(shí),取得最大值,由,得,即,所以的最大值為,故選:B10、B【解析】設(shè)直線的傾斜角為,設(shè)垂直于準(zhǔn)線于,由拋物線的性質(zhì)可得,則,當(dāng)直線PA與拋物線相切時(shí),最小,取得最大值,設(shè)出直線方程得到直線和拋物線相切時(shí)的點(diǎn)P的坐標(biāo),然后進(jìn)行計(jì)算得到結(jié)果.【詳解】設(shè)直線的傾斜角為,設(shè)垂直于準(zhǔn)線于,由拋物線的性質(zhì)可得,所以則,當(dāng)最小時(shí),則值最大,所以當(dāng)直線PA與拋物線相切時(shí),θ最大,即最小,由題意可得,設(shè)切線PA的方程為:,,整理可得,,可得,將代入,可得,所以,即P的橫坐標(biāo)為1,即P的坐標(biāo),所以,,所以的最大值為:,故選:B【點(diǎn)睛】關(guān)鍵點(diǎn)睛:本題主要考查了拋物線的簡(jiǎn)單性質(zhì).解題的關(guān)鍵是利用了拋物線的定義.一般和拋物線有關(guān)的小題,很多時(shí)可以應(yīng)用結(jié)論來處理的;平時(shí)練習(xí)時(shí)應(yīng)多注意拋物線的結(jié)論的總結(jié)和應(yīng)用.尤其和焦半徑聯(lián)系的題目,一般都和定義有關(guān),實(shí)現(xiàn)點(diǎn)點(diǎn)距和點(diǎn)線距的轉(zhuǎn)化11、C【解析】設(shè),代入雙曲線方程相減后可求得,從而得漸近線方程【詳解】設(shè),則,相減得,∴,又線段的中點(diǎn)為P(2,4),的斜率為1,∴,,∴漸近線方程為故選:C【點(diǎn)睛】方法點(diǎn)睛:本題考查求雙曲線的漸近線方程,已知弦的中點(diǎn)(或涉及到中點(diǎn)),可設(shè)弦兩端點(diǎn)的坐標(biāo),代入雙曲線方程后作差,作差后式子中有直線的斜率,弦中點(diǎn)坐標(biāo),有.這種方法叫點(diǎn)差法12、B【解析】把橢圓方程化為標(biāo)準(zhǔn)方程可判斷焦點(diǎn)位置和求出長(zhǎng)軸長(zhǎng).【詳解】橢圓化為標(biāo)準(zhǔn)方程為,所以,且,所以橢圓焦點(diǎn)在軸上,,長(zhǎng)軸長(zhǎng)為.故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、##【解析】以為坐標(biāo)原點(diǎn),建立空間直角坐標(biāo)系,求得的坐標(biāo)之間的關(guān)系,以及坐標(biāo)的范圍,即可求得結(jié)果.【詳解】以D為原點(diǎn),為x軸,為y軸,為z軸,建立空間直角坐標(biāo)系如下所示:設(shè),則,,∵,∴,解得,因?yàn)椋詂的最大值為,即點(diǎn)P到平面的距離d的最大值為.故答案為:.14、【解析】由橢圓方程和圓的方程可確定橢圓焦點(diǎn)、圓心和半徑;當(dāng)最小時(shí),可知,此時(shí);根據(jù)橢圓性質(zhì)知,解方程可求得,進(jìn)而得到離心率.【詳解】由橢圓方程知其右焦點(diǎn)為;由圓的方程知:圓心為,半徑為;當(dāng)最小時(shí),則最小,即,此時(shí)最?。淮藭r(shí),;為橢圓右頂點(diǎn)時(shí),,解得:,橢圓的離心率.故答案為:.15、(-1,0]【解析】將題意的命題轉(zhuǎn)化條件為“,”為真命題,結(jié)合一元二次不等式恒成立即可得解.【詳解】因?yàn)槊}“,使得”是假命題,所以其否定“,”為真命題,即在R上恒成立.當(dāng)時(shí),不等式為,符合題意;當(dāng)時(shí),則需滿足,解得;綜上,實(shí)數(shù)的取值范圍為.故答案為:.16、2【解析】由題可求函數(shù)的導(dǎo)數(shù),再利用導(dǎo)數(shù)的幾何意義即求.【詳解】∵,∴,,又函數(shù)在x=1處的切線與直線y=kx平行,∴.故答案為:2.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)建立空間直角坐標(biāo)系,求出相關(guān)各點(diǎn)坐標(biāo),求出,利用向量的夾角公式求得答案;(2)求出平面平面和平面的一個(gè)法向量,利用向量夾角公式求得答案.【小問1詳解】以為正交基底,建立如圖所示的空間直角坐標(biāo)系,則,,所以,所以直線所成角的余弦值為;【小問2詳解】設(shè)為平面的一個(gè)法向量,,則m?,同理,則,可取平面的一個(gè)法向量為,則,由圖可知二面角為銳角,所以二面角的余弦值為.18、(1)(2)存在,【解析】(1)根據(jù)離心率及短軸長(zhǎng),利用橢圓中的關(guān)系可以求出橢圓方程;(2)設(shè)直線的方程,與橢圓方程聯(lián)立,根據(jù)一元二次方程根與系數(shù)關(guān)系,結(jié)合已知和斜率公式,可以求出直線的方程.【小問1詳解】,,,,橢圓的標(biāo)準(zhǔn)方程為.【小問2詳解】由已知可得,,,∴,∵,設(shè)直線的方程為:,代入橢圓方程整理得,設(shè),,則,,∵,∴.即,因?yàn)?,,?.所以,或.又時(shí),直線過點(diǎn),不合要求,所以.故存在直線:滿足題設(shè)條件.19、(1);(2)3.【解析】(1)把展開得,兩邊同乘得,再代極坐標(biāo)公式得曲線的直角坐標(biāo)方程.(2)將代入曲線C的直角坐標(biāo)方程得,再利用直線參數(shù)方程t的幾何意義和韋達(dá)定理求解.【詳解】(1)把展開得,兩邊同乘得①將代入①,即得曲線的直角坐標(biāo)方程為②(2)將代入②式,得,點(diǎn)M的直角坐標(biāo)為(0,3),設(shè)這個(gè)方程的兩個(gè)實(shí)數(shù)根分別為t1,t2,則∴t1<0,t2<0則由參數(shù)t的幾何意義即得.【點(diǎn)睛】本題主要考查極坐標(biāo)和直角坐標(biāo)的互化、直線參數(shù)方程t的幾何意義,屬于基礎(chǔ)題.20、詳見解析【解析】利用反證法,即可推得矛盾.【詳解】假設(shè)有理數(shù),則,則,為整數(shù),的尾數(shù)只能是0,1,4,5,6,9,的尾數(shù)只能是0,1,4,5,6,9,則的尾數(shù)是0,2,8,由得,尾數(shù)為0,則的尾數(shù)是0,而的尾數(shù)為0或5,這與為最簡(jiǎn)分?jǐn)?shù),的最大公約數(shù)是1,相矛盾,所以假設(shè)不正確,是無理數(shù).21、(1)證明見解析(2)存在,點(diǎn)E為線段中點(diǎn)【解析】(1)通過作輔助線結(jié)合面面垂直的性質(zhì)證明側(cè)面,從而證明結(jié)論;(2)建立空間直角坐標(biāo)系,求出相關(guān)點(diǎn)的坐標(biāo),再求相關(guān)的向量坐標(biāo),求平面的法向量,利用向量的夾角公式求得答案.【小問1詳解】證明:連接交于點(diǎn),因,則由平面?zhèn)让妫移矫鎮(zhèn)让?,得平面,又平面,所以三棱柱是直三棱柱,則底面ABC,所以.又,從而側(cè)面,又側(cè)面,故.【小問2詳解】由(1).平面,則直線與平面所成的角,所以,又,所以假設(shè)在線段上是否存在一點(diǎn)E,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度城市貨運(yùn)車輛運(yùn)輸及配送服務(wù)合同4篇
- 2025年度寵物活體活體銷售區(qū)域保護(hù)合同4篇
- 二零二五年度櫥柜定制生產(chǎn)加工合同4篇
- 2025年茶山茶葉出口貿(mào)易合作協(xié)議書模板4篇
- 二零二四年度專業(yè)派遣員工管理服務(wù)合同3篇
- 二零二五年度充電樁充電站市場(chǎng)營(yíng)銷與推廣合同3篇
- 二零二五年度廚房設(shè)備用品市場(chǎng)調(diào)研與推廣合同2篇
- 二零二四年新材料研發(fā)入股投資協(xié)議3篇
- 二零二四年皮革生產(chǎn)線全套設(shè)備買賣合作協(xié)議書3篇
- 2025年度環(huán)保節(jié)能設(shè)備代理招商合同3篇
- 再生障礙性貧血課件
- 產(chǎn)后抑郁癥的護(hù)理查房
- 2024年江蘇護(hù)理職業(yè)學(xué)院高職單招(英語/數(shù)學(xué)/語文)筆試歷年參考題庫含答案解析
- 電能質(zhì)量與安全課件
- 醫(yī)藥營(yíng)銷團(tuán)隊(duì)建設(shè)與管理
- 工程項(xiàng)目設(shè)計(jì)工作管理方案及設(shè)計(jì)優(yōu)化措施
- 圍場(chǎng)滿族蒙古族自治縣金匯螢石開采有限公司三義號(hào)螢石礦礦山地質(zhì)環(huán)境保護(hù)與土地復(fù)墾方案
- 小升初幼升小擇校畢業(yè)升學(xué)兒童簡(jiǎn)歷
- 資金支付審批單
- 第一單元(金融知識(shí)進(jìn)課堂)課件
- 介入導(dǎo)管室護(hù)士述職報(bào)告(5篇)
評(píng)論
0/150
提交評(píng)論