版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
江蘇省無(wú)錫市第一女子中學(xué)2025屆高二上數(shù)學(xué)期末教學(xué)質(zhì)量檢測(cè)試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無(wú)效;在草稿紙、試卷上答題無(wú)效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知雙曲線的離心率為2,則()A.2 B.C. D.12.某學(xué)習(xí)小組研究一種衛(wèi)星接收天線(如圖①所示),發(fā)現(xiàn)其曲面與軸截面的交線為拋物線,在軸截面內(nèi)的衛(wèi)星波束呈近似平行狀態(tài)射入形為拋物線的接收天線,經(jīng)反射聚焦到焦點(diǎn)處(如圖②所示).已知接收天線的口徑(直徑)為3.6m,深度為0.6m,則該拋物線的焦點(diǎn)到頂點(diǎn)的距離為()A.1.35m B.2.05mC.2.7m D.5.4m3.若雙曲線經(jīng)過點(diǎn),且它的兩條漸近線方程是,則雙曲線的離心率是()A. B.C. D.104.已知直線經(jīng)過拋物線的焦點(diǎn),且與該拋物線交于,兩點(diǎn),若滿足,則直線的方程為()A. B.C. D.5.設(shè)x∈R,則x<3是0<x<3的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分又不必要條件6.函數(shù)y=x3+x2-x+1在區(qū)間[-2,1]上的最小值為()A. B.2C.-1 D.-47.已知向量,,則以下說法不正確的是()A. B.C. D.8.若直線與直線平行,則()A. B.C. D.9.拋物線有如下光學(xué)性質(zhì):平行于拋物線對(duì)稱軸的入射光線經(jīng)拋物線反射后必過拋物線的焦點(diǎn).已知拋物線的焦點(diǎn)為F,一條平行于y軸的光線從點(diǎn)射出,經(jīng)過拋物線上的點(diǎn)A反射后,再經(jīng)拋物線上的另一點(diǎn)B射出,則經(jīng)點(diǎn)B反射后的反射光線必過點(diǎn)()A. B.C. D.10.《九章算術(shù)》第三章“衰分”介紹比例分配問題:“衰分”是按比例遞減分配的意思,通常稱遞減的比例(即百分比)為“衰分比”.如:甲、乙、丙、丁分別分得,,,,遞減的比例為,那么“衰分比”就等于,今共有糧石,按甲、乙、丙、丁的順序進(jìn)行“衰分”,已知乙分得石,甲、丙所得之和為石,則“衰分比”為()A. B.C. D.11.下列命題為真命題的是()A.若,則 B.若,則C.若,則 D.若,則12.已知雙曲線C的離心率為,,是C的兩個(gè)焦點(diǎn),P為C上一點(diǎn),,若△的面積為,則雙曲線C的實(shí)軸長(zhǎng)為()A.1 B.2C.4 D.6二、填空題:本題共4小題,每小題5分,共20分。13.已知5道試題中有3道代數(shù)題和2道幾何題,每次從中抽取一道題,抽出的題不再放回,在第1次抽到代數(shù)題的條件下,第2次抽到幾何題的概率為________.14.已知橢圓的左、右焦點(diǎn)分別為、,關(guān)于原點(diǎn)對(duì)稱的點(diǎn)A、B在橢圓上,且滿足,若令且,則該橢圓離心率的取值范圍為___________15.已知莖葉圖記錄了甲、乙兩組各名學(xué)生在一次英語(yǔ)聽力測(cè)試中的成績(jī)(單位:分).已知甲組數(shù)據(jù)的中位數(shù)為,乙組數(shù)據(jù)的平均數(shù)為,則的值為__________.甲組乙組16.若雙曲線的漸近線為,則其離心率的值為_______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知直線過點(diǎn),且被兩條平行直線,截得的線段長(zhǎng)為.(1)求的最小值;(2)當(dāng)直線與軸平行時(shí),求的值.18.(12分)已知橢圓,四點(diǎn)中,恰有三點(diǎn)在橢圓上(1)求橢圓的方程;(2)設(shè)直線不經(jīng)過點(diǎn),且與橢圓相交于不同的兩點(diǎn).若直線與直線的斜率之和為,證明:直線過一定點(diǎn),并求此定點(diǎn)坐標(biāo)19.(12分)如圖,在正四棱柱中,是上的點(diǎn),滿足為等邊三角形.(1)求證:平面;(2)求二面角的余弦值.20.(12分)如圖,四棱柱的底面為正方形,平面,,,點(diǎn)在上,且.(1)求證:;(2)求直線與平面所成角的正弦值;(3)求平面與平面夾角的余弦值.21.(12分)已知關(guān)于的不等式(1)若不等式的解集為,求的值(2)若不等式的解集為,求的取值范圍22.(10分)已知函數(shù)圖像在點(diǎn)處的切線方程為.(1)求實(shí)數(shù)、的值;(2)求函數(shù)在上的最值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】由雙曲線的性質(zhì),直接表示離心率,求.【詳解】由雙曲線方程可知,因?yàn)?,所以,解得:,又,所?故選:D【點(diǎn)睛】本題考查雙曲線基本性質(zhì),意在考查數(shù)形結(jié)合分析問題和解決問題能力,屬于中檔題型,一般求雙曲線離心率的方法:
直接法:直接求出,然后利用公式求解;2.公式法:,3.構(gòu)造法:根據(jù)條件,可構(gòu)造出的齊次方程,通過等式兩邊同時(shí)除以,進(jìn)而得到關(guān)于的方程.2、A【解析】根據(jù)題意先建立恰當(dāng)?shù)淖鴺?biāo)系,可設(shè)出拋物線方程,利用已知條件得出點(diǎn)在拋物線上,代入方程求得p值,進(jìn)而求得焦點(diǎn)到頂點(diǎn)的距離.【詳解】如圖所示,在接收天線的軸截面所在平面上建立平面直角坐標(biāo)系xOy,使接收天線的頂點(diǎn)(即拋物線的頂點(diǎn))與原點(diǎn)O重合,焦點(diǎn)F在x軸上設(shè)拋物線的標(biāo)準(zhǔn)方程為,由已知條件可得,點(diǎn)在拋物線上,所以,解得,因此,該拋物線的焦點(diǎn)到頂點(diǎn)的距離為1.35m,故選:A.3、A【解析】由已知設(shè)雙曲線方程為:,代入求得,計(jì)算即可得出離心率.【詳解】雙曲線經(jīng)過點(diǎn),且它的兩條漸近線方程是,設(shè)雙曲線方程為:,代入得:,.所以雙曲線方程為:..雙曲線C的離心率為故選:A4、C【解析】求出拋物線的焦點(diǎn),設(shè)出直線方程,代入拋物線方程,運(yùn)用韋達(dá)定理和向量坐標(biāo)表示,解得,即可得出直線的方程.【詳解】解:拋物線的焦點(diǎn),設(shè)直線為,則,整理得,則,.由可得,代入上式即可得,所以,整理得:.故選:C.【點(diǎn)睛】本題考查直線和拋物線的位置關(guān)系,主要考查韋達(dá)定理和向量共線的坐標(biāo)表示,考查運(yùn)算能力,屬于中檔題.5、B【解析】利用充分條件、必要條件的定義可得出結(jié)論.【詳解】,因此,“”是“”必要不充分條件.故選:B.6、C【解析】詳解】,令,解得或;令,解得函數(shù)在上遞增,在遞減,在遞增,時(shí),取極大值,極大值是時(shí),函數(shù)取極小值,極小值是,而時(shí),時(shí),,故函數(shù)的最小值為,故選C.7、C【解析】可根據(jù)已知的和的坐標(biāo),通過計(jì)算向量數(shù)量積、向量的模,即可做出判斷.【詳解】因?yàn)橄蛄浚?,所以,故,所以選項(xiàng)A正確;,,所以,故選項(xiàng)B正確;,所以,故選項(xiàng)C錯(cuò)誤;,所以,,故,所以選項(xiàng)D正確.故選:C.8、D【解析】根據(jù)兩直線平行可得出關(guān)于實(shí)數(shù)的等式,由此可解得實(shí)數(shù)的值.【詳解】由于直線與直線平行,則,解得.故選:D.9、D【解析】求出、坐標(biāo)可得直線的方程,與拋物線方程聯(lián)立求出,根據(jù)選項(xiàng)可得答案,【詳解】把代入得,所以,所以直線的方程為即,與拋物線方程聯(lián)立解得,所以,因?yàn)榉瓷涔饩€平行于y軸,根據(jù)選項(xiàng)可得D正確,故選:D10、A【解析】根據(jù)題意,設(shè)衰分比為,甲分到石,,然后可得和,解出、的值即可【詳解】根據(jù)題意,設(shè)衰分比為,甲分到石,,又由今共有糧食石,按甲、乙、丙、丁的順序進(jìn)行“衰分”,已知乙分得90石,甲、丙所得之和為164石,則,,解得:,,故選:A11、D【解析】通過舉反列即可得ABC錯(cuò)誤,利用不等式性質(zhì)可判斷D【詳解】A.當(dāng)時(shí),,但,故A錯(cuò);B.當(dāng)時(shí),,故B錯(cuò);C.當(dāng)時(shí),,但,故C錯(cuò);D.若,則,D正確故選:D12、C【解析】由已知條件可得,,,再由余弦定理得,進(jìn)而求其正弦值,最后利用三角形面積公式列方程求參數(shù)a,即可知雙曲線C的實(shí)軸長(zhǎng).【詳解】由題意知,點(diǎn)P在右支上,則,又,∴,,又,∴,則在△中,,∴,故,解得,∴實(shí)軸長(zhǎng)為,故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、.【解析】設(shè)事件:第1次抽到代數(shù)題,事件:第2次抽到幾何題,求得,結(jié)合條件概率的計(jì)算公式,即可求解.【詳解】由題意,從5道試題中有3道代數(shù)題和2道幾何題,每次從中抽取一道題,抽出不再放回,設(shè)事件:第1次抽到代數(shù)題,事件:第2次抽到幾何題,則,,所以在第1次抽到代數(shù)題的條件下,第2次抽到幾何題的概率為:.故答案為:.14、【解析】由得為矩形,則,故,結(jié)合正弦函數(shù)即可求得范圍【詳解】由已知可得,且四邊形為矩形所以,又因?yàn)?,所以得離心率因?yàn)椋?,可得,從而故答案為?5、【解析】根據(jù)中位數(shù)、平均數(shù)的定義,結(jié)合莖葉圖進(jìn)行計(jì)算求解即可.【詳解】根據(jù)莖葉圖可知:甲組名學(xué)生在一次英語(yǔ)聽力測(cè)試中的成績(jī)分別;乙組名學(xué)生在一次英語(yǔ)聽力測(cè)試中的成績(jī)分別,因?yàn)榧捉M數(shù)據(jù)的中位數(shù)為,所以有,又因?yàn)橐医M數(shù)據(jù)的平均數(shù)為,所以有,所以,故答案為:16、【解析】利用漸近線斜率為和雙曲線的關(guān)系可構(gòu)造關(guān)于的齊次方程,進(jìn)而求得結(jié)果.【詳解】由漸近線方程可知:,即,,,(負(fù)值舍掉).故答案為:.【點(diǎn)睛】本題考查根據(jù)雙曲線漸近線方程求解離心率的問題,關(guān)鍵是利用漸進(jìn)線的斜率構(gòu)造關(guān)于的齊次方程.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)3;(2)5【解析】(1)由題可得和的距離即為的最小值;(2)可得此時(shí)直線的方程為,求出交點(diǎn)坐標(biāo)即可求出距離.【詳解】(1)由題可得當(dāng)且時(shí),取得最小值,即和的距離,由兩平行線間的距離公式,得,所以的最小值為3.(2)當(dāng)直線與軸平行時(shí),方程為,設(shè)直線與直線,分別交于點(diǎn),,則,,所以,即,所以.18、(1)(2)證明見解析,定點(diǎn)【解析】(1)先判斷出在橢圓上,再代入求橢圓方程;(2)假設(shè)斜率存在,設(shè)出直線,利用斜率之和為,求出之間的關(guān)系,即可求出定點(diǎn),再說明斜率不存在時(shí),直線仍過該點(diǎn)即可.【小問1詳解】由對(duì)稱性同時(shí)在橢圓上或同時(shí)不在橢圓上,從而在橢圓上,因此不在橢圓上,故在橢圓上,將,代入橢圓的方程,解得,所以橢圓的方程為【小問2詳解】當(dāng)直線斜率存在時(shí),令方程為,由得所以得方程為,過定點(diǎn)當(dāng)直線斜率不存在時(shí),令方程為,由,即解得此時(shí)直線方程為,也過點(diǎn)綜上,直線過定點(diǎn).【點(diǎn)睛】本題關(guān)鍵點(diǎn)在于先假設(shè)斜率存在,設(shè)出直線,利用題目所給條件得到之間的關(guān)系,即可求出定點(diǎn),再說明斜率不存在時(shí),直線仍過該點(diǎn)即可,屬于定點(diǎn)問題的常見解法,注意積累掌握.19、(1)證明見解析(2)【解析】(1)根據(jù)題意證明,,然后根據(jù)線面垂直的判定定理證明問題;(2)以,,為軸的正方向建立空間直角坐標(biāo)系,求平面,平面的法向量,求法向量的夾角,根據(jù)二面角的余弦值與法向量的夾角的余弦的關(guān)系確定二面角的余弦值.【小問1詳解】由題意,,等邊三角形,,∵平面ABCD,∴,則,即為中點(diǎn).連接,∵平面,平面,∴,易得,則,又,于是,即,同理,即,又,平面平面.【小問2詳解】由題意直線平面,四邊形為正方形,故以,,為軸的正方向建立空間直角坐標(biāo)系,則,.設(shè)面的法向量為,同理可得面的法向量,∴二面角的余弦值為20、(1)證明見解析(2)(3)【解析】(1)以為原點(diǎn),所在的直線為軸的正方向建立空間直角坐標(biāo)系,求出平面的一個(gè)法向量可得,即平面,再由線面垂直的性質(zhì)可得答案;(2)設(shè)直線與平面所成角的為,可得答案;(3)由二面角的向量求法可得答案.【小問1詳解】以為原點(diǎn),所在的直線為軸的正方向建立空間直角坐標(biāo)系,則,,,,,所以,,,設(shè)平面的一個(gè)法向量為,所以,即,令,則,所以,所以,所以平面,平面,所以.【小問2詳解】,所以,由(1)平面的一個(gè)法向量為,設(shè)直線與平面所成角的為,所以直線與平面所成角的正弦值.【小問3詳解】由已知為平面的一個(gè)法向量,且,由(1)平面的一個(gè)法向量為,所以,由圖可得平面與平面夾角的余弦值為.21、(1);(2)【解析】(1)根據(jù)關(guān)于的不等式的解集為,得到和1是方程的兩個(gè)實(shí)數(shù)根,再利用韋達(dá)定理求解.(2)根據(jù)關(guān)于的不等式的解集為.又因?yàn)?,利用判別式法求解.【詳解】(1)因?yàn)殛P(guān)于的不等式的解集為,所以和1是方程的兩個(gè)實(shí)數(shù)根,由韋達(dá)定理可得,得(2)因?yàn)殛P(guān)于的不等式的解集為因?yàn)樗裕獾?,故的取值范圍為【點(diǎn)睛】本題主要考查一元二次不
溫馨提示
- 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 【金版學(xué)案-同步備課】2014-2021學(xué)年高中語(yǔ)文達(dá)標(biāo)鞏固(人教語(yǔ)文選修(先秦諸子))-1
- 【KS5U原創(chuàng)】新課標(biāo)2021年高一地理暑假作業(yè)九
- 2024年簡(jiǎn)化版離婚合同書范本夫妻共同簽署版
- 2025年度新能源企業(yè)員工勞動(dòng)合同與綠色能源推廣責(zé)任書3篇
- 【科學(xué)備考】2021高考生物二輪復(fù)習(xí)配套試題:生態(tài)工程(含2020高考試題)
- 外出學(xué)習(xí)向領(lǐng)導(dǎo)匯報(bào)
- 谷倉(cāng)醫(yī)療系統(tǒng)住院醫(yī)生系統(tǒng)說明書
- 陶瓷企業(yè)的品牌宣傳與媒體合作考核試卷
- 新零售供應(yīng)鏈管理創(chuàng)新-洞察分析
- 虛擬現(xiàn)實(shí)教學(xué)互動(dòng)性提升-洞察分析
- 2025年八省聯(lián)考高考語(yǔ)文作文真題及參考范文
- 科研倫理與學(xué)術(shù)規(guī)范(研究生)期末試題庫(kù)及答案
- 高中化學(xué)必修二教學(xué)進(jìn)度表
- T-CAAMM 8-2018 動(dòng)力換檔拖拉機(jī) 通用技術(shù)條件
- 收款賬戶確認(rèn)書
- 消防水池 (有限空間)作業(yè)安全告知牌及警示標(biāo)志
- 修復(fù)學(xué)全口義齒
- 機(jī)械設(shè)備租賃合同范本簡(jiǎn)單版(9篇)
- 美甲顧客檔案表Excel模板
- 公安警察工作總結(jié)匯報(bào)PPT模板
- 城市生活垃圾分選系統(tǒng)設(shè)計(jì)
評(píng)論
0/150
提交評(píng)論