版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
廣東省中山市一中豐山學(xué)部2025屆高二上數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)模擬試題注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無(wú)效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.對(duì)任意實(shí)數(shù)k,直線與圓的位置關(guān)系是()A.相交 B.相切C.相離 D.與k有關(guān)2.設(shè)拋物線的焦點(diǎn)為,點(diǎn)為拋物線上一點(diǎn),點(diǎn)坐標(biāo)為,則的最小值為()A. B.C. D.3.設(shè)函數(shù)是定義在上的函數(shù)的導(dǎo)函數(shù),有,若,,則,,的大小關(guān)系是()A. B.C. D.4.拋物線的焦點(diǎn)為F,準(zhǔn)線為l,點(diǎn)P是準(zhǔn)線l上的動(dòng)點(diǎn),若點(diǎn)A在拋物線C上,且,則(O為坐標(biāo)原點(diǎn))的最小值為()A. B.C. D.5.從橢圓的一個(gè)焦點(diǎn)發(fā)出的光線,經(jīng)過(guò)橢圓反射后,反射光線經(jīng)過(guò)橢圓的另一個(gè)焦點(diǎn);從雙曲線的一個(gè)焦點(diǎn)發(fā)出的光線,經(jīng)過(guò)雙曲線反射后,反射光線的反向延長(zhǎng)線經(jīng)過(guò)雙曲線的另一個(gè)焦點(diǎn).如圖①,一個(gè)光學(xué)裝置由有公共焦點(diǎn)的橢圓與雙曲線構(gòu)成,現(xiàn)一光線從左焦點(diǎn)發(fā)出,依次經(jīng)與反射,又回到了點(diǎn),歷時(shí)秒;若將裝置中的去掉,如圖②,此光線從點(diǎn)發(fā)出,經(jīng)兩次反射后又回到了點(diǎn),歷時(shí)秒;若,則的長(zhǎng)軸長(zhǎng)與的實(shí)軸長(zhǎng)之比為()A. B.C. D.6.在平面上有及內(nèi)一點(diǎn)O滿足關(guān)系式:即稱為經(jīng)典的“奔馳定理”,若的三邊為a,b,c,現(xiàn)有則O為的()A.外心 B.內(nèi)心C.重心 D.垂心7.若圓上至少有三個(gè)點(diǎn)到直線的距離為1,則半徑的取值范圍是()A. B.C. D.8.一動(dòng)圓與兩圓x2+y2=1和x2+y2﹣8x+12=0都外切,則動(dòng)圓圓心軌跡為()A.圓 B.橢圓C.雙曲線的一支 D.拋物線9.若是真命題,是假命題,則A.是真命題 B.是假命題C.是真命題 D.是真命題10.據(jù)記載,歐拉公式是由瑞士著名數(shù)學(xué)家歐拉發(fā)現(xiàn)的,該公式被譽(yù)為“數(shù)學(xué)中的天橋”特別是當(dāng)時(shí),得到一個(gè)令人著迷的優(yōu)美恒等式,將數(shù)學(xué)中五個(gè)重要的數(shù)(自然對(duì)數(shù)的底,圓周率,虛數(shù)單位,自然數(shù)的單位和零元)聯(lián)系到了一起,有些數(shù)學(xué)家評(píng)價(jià)它是“最完美的數(shù)學(xué)公式”.根據(jù)歐拉公式,復(fù)數(shù)的虛部()A. B.C. D.11.已知點(diǎn)在拋物線:上,則的焦點(diǎn)到其準(zhǔn)線的距離為()A. B.C.1 D.212.中國(guó)剪紙是一種用剪刀或刻刀在紙上剪刻花紋,用于裝點(diǎn)生活或配合其他民俗活動(dòng)的民間藝術(shù).如圖所示的圓形剪紙中,正六邊形的所有頂點(diǎn)都在該圓上,若在該圓形剪紙的內(nèi)部投擲一點(diǎn),則該點(diǎn)恰好落在正六邊形內(nèi)部的概率為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若復(fù)數(shù)z=為純虛數(shù)(),則|z|=_____.14.如圖,在三棱錐P–ABC的平面展開圖中,AC=1,,AB⊥AC,AB⊥AD,∠CAE=30°,則cos∠FCB=______________.15.已知△ABC的周長(zhǎng)為20,且頂點(diǎn),則頂點(diǎn)A的軌跡方程是______16.若,且,則_____________三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知橢圓,其上頂點(diǎn)與左右焦點(diǎn)圍成的是面積為的正三角形.(1)求橢圓的方程;(2)過(guò)橢圓的右焦點(diǎn)的直線(的斜率存在)交橢圓于兩點(diǎn),弦的垂直平分線交軸于點(diǎn),問(wèn):是否是定值?若是,求出定值:若不是,說(shuō)明理由.18.(12分)已知函數(shù)(1)求函數(shù)的單調(diào)遞減區(qū)間;(2)在中,角,,所對(duì)的邊分別為,,,且滿足,,求面積的最大值19.(12分)已知橢圓與雙曲線有相同的焦點(diǎn),且的短軸長(zhǎng)為(1)求的方程;(2)若直線與交于P,Q兩點(diǎn),,且的面積為,求k20.(12分)如圖,在四棱錐P-ABCD中,PA⊥底面ABCD,底面ABCD是矩形,PA=2AD=4,且PC=.點(diǎn)E在PC上.(1)求證:平面BDE⊥平面PAC;(2)若E為PC的中點(diǎn),求直線PC與平面AED所成的角的正弦值.21.(12分)已知橢圓的離心率為,點(diǎn)是橢圓E上一點(diǎn).(1)求E的方程;(2)設(shè)過(guò)點(diǎn)的動(dòng)直線與橢圓E相交于兩點(diǎn),O為坐標(biāo)原點(diǎn),求面積的取值范圍.22.(10分)已知點(diǎn)是圓上任意一點(diǎn),是圓內(nèi)一點(diǎn),線段的垂直平分線與半徑相交于點(diǎn)(1)當(dāng)點(diǎn)在圓上運(yùn)動(dòng)時(shí),求點(diǎn)的軌跡的方程;(2)設(shè)不經(jīng)過(guò)坐標(biāo)原點(diǎn),且斜率為的直線與曲線相交于、兩點(diǎn),記、的斜率分別是、,以、為直徑的圓的面積分別為、當(dāng)、都存在且不為時(shí),試探究是否為定值?若是,求出此定值;若不是,請(qǐng)說(shuō)明理由
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】判斷直線恒過(guò)定點(diǎn),可知定點(diǎn)在圓內(nèi),即可判斷直線與圓的位置關(guān)系.【詳解】由可知,即該圓的圓心坐標(biāo)為,半徑為,由可知,則該直線恒過(guò)定點(diǎn),將點(diǎn)代入圓的方程可得,則點(diǎn)在圓內(nèi),則直線與圓的位置關(guān)系為相交.故選:.2、B【解析】設(shè)點(diǎn)P在準(zhǔn)線上的射影為D,則根據(jù)拋物線的定義可知|PF|=|PD|,進(jìn)而把問(wèn)題轉(zhuǎn)化為求|PM|+|PD|的最小值,即可求解【詳解】解:由題意,設(shè)點(diǎn)P在準(zhǔn)線上的射影為D,則根據(jù)拋物線的定義可知|PF|=|PD|,所以要求|PM|+|PF|的最小值,即求|PM|+|PD|的最小值,當(dāng)D,P,M三點(diǎn)共線時(shí),|PM|+|PD|取得最小值為故選:B3、C【解析】設(shè),求導(dǎo)分析的單調(diào)性,又,,,即可得出答案【詳解】解:設(shè),則,又因?yàn)?,所以,所以在上單調(diào)遞增,又,,,因?yàn)椋?,所?故選:C4、D【解析】依題意得點(diǎn)坐標(biāo),作點(diǎn)關(guān)于的對(duì)稱點(diǎn),則,求即為最小值【詳解】如圖所示:作點(diǎn)關(guān)于的對(duì)稱點(diǎn),連接,設(shè)點(diǎn),不妨設(shè),由題意知,直線l方程為,則,得所以,得,所以由,當(dāng)三點(diǎn)共線時(shí)取等號(hào),又所以最小值為故選:D5、D【解析】在圖①和圖②中,利用橢圓和雙曲線的定義,分別求得和的周長(zhǎng),再根據(jù)光速相同,且求解.【詳解】在圖①中,由橢圓的定義得:,由雙曲線的定義得,兩式相減得,所以的周長(zhǎng)為,在圖②中,的周長(zhǎng)為,因?yàn)楣馑傧嗤?,且,所以,即,所以,即的長(zhǎng)軸長(zhǎng)與的實(shí)軸長(zhǎng)之比為,故選:D6、B【解析】利用三角形面積公式,推出點(diǎn)O到三邊距離相等。【詳解】記點(diǎn)O到AB、BC、CA的距離分別為,,,,因?yàn)椋瑒t,即,又因?yàn)?,所以,所以點(diǎn)P是△ABC的內(nèi)心.故選:B7、B【解析】先求出圓心到直線的距離為,由此可知當(dāng)圓的半徑為時(shí),圓上恰有三點(diǎn)到直線的距離為,當(dāng)圓的半徑時(shí),圓上恰有四個(gè)點(diǎn)到直線的距離為,故半徑的取值范圍是,即可求出答案.【詳解】由已知條件得的圓心坐標(biāo)為,圓心到直線為,∵圓上至少有三個(gè)點(diǎn)到直線的距離為1,∴圓的半徑的取值范圍是,即,即半徑的取值范圍是.故選:.8、C【解析】設(shè)動(dòng)圓圓心,與兩圓x2+y2=1和x2+y2﹣8x+12=0都外切,列出幾何關(guān)系式,化簡(jiǎn),再根據(jù)圓錐曲線的定義,可得到動(dòng)圓圓心軌跡.【詳解】設(shè)動(dòng)圓圓心,半徑為,圓x2+y2=1的圓心為,半徑為,圓x2+y2﹣8x+12=0,得,則圓心,半徑為,根據(jù)圓與圓相切,則,,兩式相減得,根據(jù)定義可得動(dòng)圓圓心軌跡為雙曲線的一支.故選:C【點(diǎn)睛】本題考查了兩圓的位置關(guān)系,圓錐曲線的定義,屬于基礎(chǔ)題.9、D【解析】因?yàn)槭钦婷},是假命題,所以是假命題,選項(xiàng)A錯(cuò)誤,是真命題,選項(xiàng)B錯(cuò)誤,是假命題,選項(xiàng)C錯(cuò)誤,是真命題,選項(xiàng)D正確,故選D.考點(diǎn):真值表的應(yīng)用.10、D【解析】由歐拉公式的定義和復(fù)數(shù)的概念進(jìn)行求解.【詳解】由題意,得,則復(fù)數(shù)的虛部為.故選:D.11、B【解析】由點(diǎn)在拋物線上,求得參數(shù),焦點(diǎn)到其準(zhǔn)線的距離即為.【詳解】由點(diǎn)在拋物線上,易知,,故焦點(diǎn)到其準(zhǔn)線的距離為.故選:B.12、D【解析】設(shè)圓的半徑,求出圓的面積與正六邊形的面積,再根據(jù)幾何概型的概率公式計(jì)算可得;【詳解】解:設(shè)圓的半徑,則,則,所以,所以在該圓形剪紙的內(nèi)部投擲一點(diǎn),則該點(diǎn)恰好落在正六邊形內(nèi)部的概率;故選:D二、填空題:本題共4小題,每小題5分,共20分。13、【解析】利用復(fù)數(shù)z=為純虛數(shù)求出a,即可求出|z|.【詳解】z=.由純虛數(shù)的定義知,,解得.所以.故|z|=.故答案為:.14、【解析】在中,利用余弦定理可求得,可得出,利用勾股定理計(jì)算出、,可得出,然后在中利用余弦定理可求得的值.【詳解】,,,由勾股定理得,同理得,,在中,,,,由余弦定理得,,在中,,,,由余弦定理得.故答案為:.【點(diǎn)睛】本題考查利用余弦定理解三角形,考查計(jì)算能力,屬于中等題.15、.【解析】由周長(zhǎng)確定,故軌跡是橢圓,注意焦點(diǎn)位置和摳除不符合條件的點(diǎn)即可.【詳解】解:,所以,,則頂點(diǎn)A的軌跡方程是.故答案為:.【點(diǎn)睛】考查橢圓定義的應(yīng)用,基礎(chǔ)題.16、【解析】由,可得,,,從而利用換底公式及對(duì)數(shù)的運(yùn)算性質(zhì)即可求解.【詳解】解:因?yàn)?,所以,,,又,所以,所以,所以,故答案為?三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2)是定值,定值為4【解析】(1)根據(jù)正三角形性質(zhì)與面積可求得即可求得方程;(2)當(dāng)直線斜率不為0時(shí),設(shè)其方程代入橢圓方程利用韋達(dá)定理求得兩根關(guān)系式,進(jìn)而求得的表達(dá)式,最后求比值即可;當(dāng)直線斜率為0時(shí)直接求解即可【詳解】(1)為正三角形,,可得,且,∴橢圓的方程為.(2)分以下兩種情況討論:①當(dāng)直線斜率不為0時(shí),設(shè)其方程為,且,聯(lián)立,消去得,則,且,∴弦的中點(diǎn)的坐標(biāo)為,則弦的垂直平分線為,令,得,,又,;②當(dāng)直線斜率為0時(shí),則,,則.綜合①②得是定值且為4【點(diǎn)睛】方法點(diǎn)睛:求定值問(wèn)題常見的方法有兩種:(1)從特殊入手,求出定值,再證明這個(gè)值與變量無(wú)關(guān)(2)直接推理、計(jì)算,并在計(jì)算推理的過(guò)程中消去變量,從而得到定值18、(1)(2)【解析】(1)由三角恒等變換公式化簡(jiǎn),根據(jù)三角函數(shù)性質(zhì)求解(2)由余弦定理與面積公式,結(jié)合基本不等式求解【小問(wèn)1詳解】由己知可得,由,解得:,故的單調(diào)遞減區(qū)間是【小問(wèn)2詳解】,,故,得,由余弦定理得:,得,當(dāng)且僅當(dāng)時(shí)等號(hào)成立,故,面積最大值為19、(1)(2)或k=1.【解析】(1)根據(jù)題意求得雙曲線的焦點(diǎn)即知橢圓焦點(diǎn),結(jié)合橢圓短軸長(zhǎng),可求得橢圓標(biāo)準(zhǔn)方程;(2)將直線方程和橢圓方程聯(lián)立,整理得,從而得到根與系數(shù)的關(guān)系式,然后求出弦長(zhǎng)以及到直線PQ的距離,進(jìn)而表示出,由題意得關(guān)于k的方程,解得答案.【小問(wèn)1詳解】雙曲線即,故雙曲線交點(diǎn)坐標(biāo)為,由此可知橢圓焦點(diǎn)也為,又的短軸長(zhǎng)為,故,所以,故橢圓的方程為;【小問(wèn)2詳解】聯(lián)立,整理得:,其,設(shè),則,所以=,點(diǎn)到直線PQ的距離為,所以=,又的面積為,則=,解得或k=1.20、(1)證明見解析;(2)【解析】(1)根據(jù)題意可判斷出ABCD是正方形,從而可得,再根據(jù),由線面垂直的判定定理可得平面PAC,然后由面面垂直的判定定理即可證出;(2)由、、兩兩垂直可建立空間直角坐標(biāo)系,利用向量法即可求出直線PC與平面AED所成的角的正弦值.【小問(wèn)1詳解】因?yàn)镻A⊥底面ABCD,PA=2AD=4,PC=,所以,,即ABCD是正方形,所以,而PA⊥底面ABCD,所以,又,所以平面PAC,而平面BDE,所以平面BDE⊥平面PAC【小問(wèn)2詳解】由題可知、、兩兩垂直,建系如圖,,0,,,2,,,0,,,2,,,1,,,,,,1,,,2,,設(shè)平面的一個(gè)法向量為,則,,即,取,0,,所以直線與平面所成的角的正弦值為21、(1);(2).【解析】(1)列出關(guān)于a、b、c的方程組即可求解;(2)根據(jù)題意,直線l斜率存在,設(shè)其方程為,代入橢圓方程消去y得到關(guān)于x的二次方程,根據(jù)韋達(dá)定理得到根與系數(shù)的關(guān)系,求出PQ長(zhǎng)度,求出原點(diǎn)到l的距離,根據(jù)三角形面積公式表示出△OPQ的面積,利用基本不等式求解其范圍即可.【小問(wèn)1詳解】由題設(shè)知,解得.∴橢圓E的方程為;【小問(wèn)2詳解】
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024-2030年中國(guó)物流臺(tái)車行業(yè)營(yíng)銷策略分析及投資規(guī)劃研究報(bào)告
- 2024年臨床路徑信息系統(tǒng)項(xiàng)目規(guī)劃申請(qǐng)報(bào)告
- 2024-2030年中國(guó)烘焙油脂行業(yè)競(jìng)爭(zhēng)策略及投資盈利預(yù)測(cè)報(bào)告
- 2024年桿菌肽類產(chǎn)品項(xiàng)目規(guī)劃申請(qǐng)報(bào)告模板
- 2024-2030年中國(guó)淺層地?zé)崮苄袠I(yè)發(fā)展現(xiàn)狀投資規(guī)劃分析報(bào)告
- 2024-2030年中國(guó)洗潔精行業(yè)銷售模式及發(fā)展戰(zhàn)略建議報(bào)告
- 2024-2030年中國(guó)汽車真皮座椅面套行業(yè)發(fā)展前景預(yù)測(cè)及投資規(guī)劃分析報(bào)告
- 2024-2030年中國(guó)汽車書籍項(xiàng)目可行性研究報(bào)告
- 2022年大學(xué)力學(xué)專業(yè)大學(xué)物理下冊(cè)模擬考試試題A卷-附解析
- 2022年大學(xué)環(huán)境生態(tài)專業(yè)大學(xué)物理二期末考試試題B卷-附解析
- 《爬天都峰》教學(xué)課件(第二課時(shí))
- 道路貨物運(yùn)輸企業(yè)安全風(fēng)險(xiǎn)分級(jí)管控工作方案
- 2024-2030年中國(guó)循環(huán)泵市場(chǎng)運(yùn)營(yíng)態(tài)勢(shì)分析及投資前景預(yù)測(cè)報(bào)告
- 自投戶用光伏合同
- 2024年共青團(tuán)入團(tuán)積極分子結(jié)業(yè)考試題庫(kù)及答案
- 湖北省武漢市部分學(xué)校2022-2023學(xué)年高一上學(xué)期期中調(diào)研考試物理試題(含解析)
- FX5U PLC應(yīng)用技術(shù)項(xiàng)目教程 課件 項(xiàng)目四 FX5UPLC模擬量控制與通信的編程及應(yīng)用
- 肥胖患者麻醉管理專家共識(shí)2023年版中國(guó)麻醉學(xué)指南與專家共識(shí)
- (正式版)JBT 14449-2024 起重機(jī)械焊接工藝評(píng)定
- 2024年中國(guó)大唐集團(tuán)浙江大唐烏沙山發(fā)電公司招聘筆試參考題庫(kù)含答案解析
- 2024年共青團(tuán)入團(tuán)考試題目及答案
評(píng)論
0/150
提交評(píng)論