江蘇省南京市江浦高級中學(xué)2025屆高二上數(shù)學(xué)期末復(fù)習(xí)檢測模擬試題含解析_第1頁
江蘇省南京市江浦高級中學(xué)2025屆高二上數(shù)學(xué)期末復(fù)習(xí)檢測模擬試題含解析_第2頁
江蘇省南京市江浦高級中學(xué)2025屆高二上數(shù)學(xué)期末復(fù)習(xí)檢測模擬試題含解析_第3頁
江蘇省南京市江浦高級中學(xué)2025屆高二上數(shù)學(xué)期末復(fù)習(xí)檢測模擬試題含解析_第4頁
江蘇省南京市江浦高級中學(xué)2025屆高二上數(shù)學(xué)期末復(fù)習(xí)檢測模擬試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

江蘇省南京市江浦高級中學(xué)2025屆高二上數(shù)學(xué)期末復(fù)習(xí)檢測模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知,,,若、、三個向量共面,則實(shí)數(shù)A3 B.5C.7 D.92.已知是上的單調(diào)增函數(shù),則的取值范圍是A.﹣1b2 B.﹣1b2C.b﹣2或b2 D.b﹣1或b23.如圖,把橢圓的長軸分成6等份,過每個分點(diǎn)作x軸的垂線交橢圓的上半部分于點(diǎn),F(xiàn)是橢圓C的右焦點(diǎn),則()A.20 B.C.36 D.304.內(nèi)角、、的對邊分別為、、,若,,,則()A. B.C. D.5.設(shè)雙曲線的方程為,過拋物線的焦點(diǎn)和點(diǎn)的直線為.若的一條漸近線與平行,另一條漸近線與垂直,則雙曲線的方程為()A. B.C. D.6.點(diǎn)是正方體的底面內(nèi)(包括邊界)的動點(diǎn).給出下列三個結(jié)論:①滿足的點(diǎn)有且只有個;②滿足的點(diǎn)有且只有個;③滿足平面的點(diǎn)的軌跡是線段.則上述結(jié)論正確的個數(shù)是()A. B.C. D.7.已知等差數(shù)列的前n項(xiàng)和為,且,則()A.2 B.4C.6 D.88.我們知道,償還銀行貸款時,“等額本金還款法”是一種很常見的還款方式,其本質(zhì)是將本金平均分配到每一期進(jìn)行償還,每一期的還款金額由兩部分組成,一部分為每期本金,即貸款本金除以還款期數(shù),另一部分是利息,即貸款本金與已還本金總額的差乘以利率.自主創(chuàng)業(yè)的大學(xué)生張華向銀行貸款的本金為48萬元,張華跟銀行約定,按照等額本金還款法,每個月還一次款,20年還清,貸款月利率為,設(shè)張華第個月的還款金額為元,則()A.2192 B.C. D.9.已知命題:;:若,則,則下列判斷正確的是()A.為真,為真,為假 B.為真,為假,為真C.為假,為假,為假 D.為真,為假,為假10.曲線的一個焦點(diǎn)F到兩條漸近線的垂線段分別為FA,F(xiàn)B,O為坐標(biāo)原點(diǎn),若四邊形OAFB是菱形,則雙曲線C的離心率等于()A. B.C.2 D.11.若復(fù)數(shù)滿足,則復(fù)平面內(nèi)表示的點(diǎn)位于()A.第一象限 B.第二象限C.第三象限 D.第四象限12.已知函數(shù),則()A.1 B.2C.3 D.5二、填空題:本題共4小題,每小題5分,共20分。13.若“,”是真命題,則實(shí)數(shù)m的取值范圍________.14.已知橢圓的兩個焦點(diǎn)分別為,,,點(diǎn)在橢圓上,若,且的面積為4,則橢圓的標(biāo)準(zhǔn)方程為______15.萬眾矚目的北京冬奧會將于2022年2月4日正式開幕,繼2008年北京奧運(yùn)會之后,國家體育場(又名鳥巢)將再次承辦奧運(yùn)會開幕式.在手工課上,王老師帶領(lǐng)同學(xué)們一起制作了一個近似鳥巢的金屬模型,其俯視圖可近似看成是兩個大小不同、扁平程度相同的橢圓.已知大橢圓的長軸長為40cm,短軸長為20cm,小橢圓的短軸長為10cm,則小橢圓的長軸長為________cm.16.已知、是橢圓()長軸的兩個端點(diǎn),、是橢圓上關(guān)于軸對稱的兩點(diǎn),直線,的斜率分別為,().若橢圓的離心率為,則的最小值為______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐中,,為的中點(diǎn),連接.(1)求證:平面;(2)求平面與平面的夾角的余弦值.18.(12分)已知拋物線的焦點(diǎn)也是橢圓的一個焦點(diǎn),如圖,過點(diǎn)任作兩條互相垂直的直線,,分別交拋物線于,,,四點(diǎn),,分別為,的中點(diǎn).(1)求的值;(2)求證:直線過定點(diǎn),并求出該定點(diǎn)的坐標(biāo);(3)設(shè)直線交拋物線于,兩點(diǎn),試求的最小值.19.(12分)設(shè)為數(shù)列的前n項(xiàng)和,且滿足(1)求證:數(shù)列為等差數(shù)列;(2)若,且成等比數(shù)列,求數(shù)列的前項(xiàng)和20.(12分)已知函數(shù),其中為常數(shù),且(1)求證:時,;(2)已知a,b,p,q為正實(shí)數(shù),滿足,比較與的大小關(guān)系.21.(12分)如圖1所示,在四邊形ABCD中,,,,將△沿BD折起,使得直線AB與平面BCD所成的角為45°,連接AC,得到如圖2所示的三棱錐(1)證明:平面ABD平面BCD;(2)若三棱錐中,二面角的大小為60°,求三棱錐的體積22.(10分)已知數(shù)列的前n項(xiàng)和為,,,其中.(1)記,求證:是等比數(shù)列;(2)設(shè),數(shù)列的前n項(xiàng)和為,求證:.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】由空間向量共面原理得存在實(shí)數(shù),,使得,由此能求出實(shí)數(shù)【詳解】解:,,,、、三個向量共面,存在實(shí)數(shù),,使得,即有:,解得,,實(shí)數(shù)故選:【點(diǎn)睛】本題考查空間向量共面原理的應(yīng)用,屬于基礎(chǔ)題2、A【解析】利用三次函數(shù)的單調(diào)性,通過其導(dǎo)數(shù)進(jìn)行研究,求出導(dǎo)數(shù),利用其導(dǎo)數(shù)恒大于0即可解決問題【詳解】∵∴∵函數(shù)是上的單調(diào)增函數(shù)∴在上恒成立∴,即.∴故選A.【點(diǎn)睛】可導(dǎo)函數(shù)在某一區(qū)間上是單調(diào)函數(shù),實(shí)際上就是在該區(qū)間上(或)(在該區(qū)間的任意子區(qū)間都不恒等于0)恒成立,然后分離參數(shù),轉(zhuǎn)化為求函數(shù)的最值問題,從而獲得參數(shù)的取值范圍,本題是根據(jù)相應(yīng)的二次方程的判別式來進(jìn)行求解.3、D【解析】由橢圓的對稱性可知,,代入計(jì)算可得答案.【詳解】設(shè)橢圓左焦點(diǎn)為,連接由橢圓的對稱性可知,,所以.故選:D.4、C【解析】利用正弦定理可求得邊的長.【詳解】由正弦定理得.故選:C.5、D【解析】由拋物線的焦點(diǎn)可求得直線的方程為,即得直線的斜率為,再根據(jù)雙曲線的漸近線的方程為,可得,即可求出,得到雙曲線的方程【詳解】由題可知,拋物線焦點(diǎn)為,所以直線的方程為,即直線的斜率為,又雙曲線的漸近線的方程為,所以,,因?yàn)?,解得故選:【點(diǎn)睛】本題主要考查拋物線的簡單幾何性質(zhì),雙曲線的幾何性質(zhì),以及直線與直線的位置關(guān)系的應(yīng)用,屬于基礎(chǔ)題6、C【解析】對于①,根據(jù)線線平行的性質(zhì)可知點(diǎn)即為點(diǎn),因此可判斷①正確;對于②,根據(jù)線面垂直的判定可知平面,,由此可判定的位置,進(jìn)而判定②的正誤;對于③,根據(jù)面面平行可判定平面平面,因此可判斷此時一定落在上,由此可判斷③的正誤.【詳解】如圖:對于①,在正方體中,,若異于,則過點(diǎn)至少有兩條直線和平行,這是不可能的,因此底面內(nèi)(包括邊界)滿足的點(diǎn)有且只有個,即為點(diǎn),故①正確;對于②,正方體中,平面,平面,所以,又,所以,而,平面,故平面,因此和垂直的直線一定落在平面內(nèi),由是平面上的動點(diǎn)可知,一定落在上,這樣的點(diǎn)有無數(shù)多個,故②錯誤;對于③,,平面,則平面,同理平面,而,所以平面平面,而平面,所以一定落在平面上,由是平面上的動點(diǎn)可知,此時一定落在上,即點(diǎn)的軌跡是線段,故③正確,故選:C.7、B【解析】根據(jù)等差數(shù)列前n項(xiàng)和公式,結(jié)合等差數(shù)列下標(biāo)的性質(zhì)、等差數(shù)列通項(xiàng)公式進(jìn)行求解即可.【詳解】設(shè)等差數(shù)列的公差為,,,故選:B8、D【解析】計(jì)算出每月應(yīng)還的本金數(shù),再計(jì)算第n個月已還多少本金,由此可計(jì)算出個月的還款金額.【詳解】由題意可知:每月還本金為2000元,設(shè)張華第個月的還款金額為元,則,故選:D9、D【解析】先判斷出命題,的真假,即可判斷.【詳解】因?yàn)槌闪?,所以命題為真,由可得或,所以命題為假命題,所以為真,為假,為假.故選:D.10、A【解析】依題意可得為正方形,即可得到,從而得到雙曲線的漸近線為,即可求出雙曲線的離心率;【詳解】解:依題意,,且四邊形為菱形,所以為正方形,所以,即雙曲線的漸近線為,即,所以;故選:A11、A【解析】根據(jù)復(fù)數(shù)的運(yùn)算法則,求得,結(jié)合復(fù)數(shù)的幾何意義,即可求解.【詳解】由題意,復(fù)數(shù)滿足,可得,所以復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點(diǎn)的坐標(biāo)為,位于第一象限.故選:A.12、C【解析】利用導(dǎo)數(shù)的定義,以及運(yùn)算法則,即可求解.【詳解】,,所以,所以故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由于“,”是真命題,則實(shí)數(shù)m的取值集合就是函數(shù)的函數(shù)值的集合,據(jù)此即可求出結(jié)果.【詳解】由于“,”是真命題,則實(shí)數(shù)m的取值集合就是函數(shù)的函數(shù)值的集合,即.故答案為:【點(diǎn)睛】本題主要考查了存在量詞命題的概念的理解,以及數(shù)學(xué)轉(zhuǎn)換思想,屬于基礎(chǔ)題.14、【解析】由題意得到為直角三角形.設(shè),,根據(jù)橢圓的離心率,定義,直角三角形的面積公式,勾股定理建立方程的方程組,消元后可求得的值.【詳解】由題可知,∴,又,代入上式整理得,由得為直角三角形又的面積為4,設(shè),,則解得所以橢圓的標(biāo)準(zhǔn)方程為15、20【解析】求出大橢圓的離心率等于小橢圓的離心率,然后求解小橢圓的長軸長【詳解】在大橢圓中,,,則,.因?yàn)閮蓹E圓扁平程度相同,所以離心率相等,所以在小橢圓中,,結(jié)合,得,所以小橢圓的長軸長為20.故填:20.【點(diǎn)睛】本題考查橢圓的簡單性質(zhì)的應(yīng)用,對橢圓相似則離心率相等這一基礎(chǔ)知識的考查16、【解析】設(shè)出點(diǎn),,,的坐標(biāo),表示出直線,的斜率,作和后利用基本不等式求最值,利用離心率求得與的關(guān)系,則答案可求詳解】解:設(shè),,,,,,,,,,,當(dāng)且僅當(dāng),即時等號成立,是橢圓長軸的兩個端點(diǎn),,是橢圓上關(guān)于軸對稱的兩點(diǎn),,,即,的最小值為,橢圓的離心率為,,即,得,的最小值為故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明過程見解析;(2).【解析】(1)根據(jù)平行四邊形的判定定理和性質(zhì),結(jié)合線面垂直的判定定理進(jìn)行證明即可;(2)利用空間向量夾角公式進(jìn)行求解即可.【小問1詳解】因?yàn)闉榈闹悬c(diǎn),所以,而,所以四邊形是平行四邊形,因此,因?yàn)?,,為的中點(diǎn),所以,,而,因?yàn)?,所以,而平面,所以平面;【小?詳解】根據(jù)(1),建立如圖所示的空間直角坐標(biāo)系,,于是有:,則平面的法向量為:,設(shè)平面的法向量為:,所以,設(shè)平面與平面的夾角為,所以.18、(1)(2)證明見解析,(3,0)(3)【解析】(1)求出橢圓的焦點(diǎn)坐標(biāo),從而可知拋物線的焦點(diǎn)坐標(biāo),進(jìn)而可得的值;(2)首先設(shè)出直線的方程,聯(lián)立直線與拋物線的方程,得到,坐標(biāo),令,可得直線過點(diǎn),再證明當(dāng),,,三點(diǎn)共線即可;(3)設(shè)出的直線方程,聯(lián)立直線與拋物線的方程,利用韋達(dá)定理找出根的關(guān)系,再利用兩點(diǎn)間的距離公式求出最小值即可.【小問1詳解】橢圓的焦點(diǎn)坐標(biāo)為,由于拋物線的焦點(diǎn)也是橢圓的一個焦點(diǎn),故,即,;小問2詳解】由(1)知,拋物線的方程為,設(shè),,,,由題意,直線的斜率存在且設(shè)直線的方程為,代入可得,則,故,故的中點(diǎn)坐標(biāo)為,由,設(shè)直線的方程為,代入可得,則,故,可得的中點(diǎn)坐標(biāo)為,令得,此時,故直線過點(diǎn),當(dāng)時,,所以,,,三點(diǎn)共線,所以直線過定點(diǎn).【小問3詳解】設(shè),由題意直線的斜率存在,設(shè)直線的方程為,代入可得,則,,,故,當(dāng)即直線垂直軸時,取得最小值.19、(1)證明見解析;(2)答案見解析.【解析】(1)利用給定的遞推公式,結(jié)合“當(dāng)時,”變形,再利用等差中項(xiàng)的定義推理作答.(2)利用(1)的結(jié)論,利用等比中項(xiàng)的定義列式計(jì)算,再利用等差數(shù)列前n項(xiàng)和公式計(jì)算作答.【小問1詳解】依題意,,當(dāng)時,有,兩式相減得:,同理可得,于是得,即,而當(dāng)時,,所以數(shù)列為等差數(shù)列.【小問2詳解】由(1)知數(shù)列為等差數(shù)列,設(shè)其首項(xiàng)為,公差為d,依題意,,解得或,當(dāng)時,,當(dāng)時,.20、(1)證明見解析(2)【解析】(1)根據(jù)導(dǎo)數(shù)判斷出函數(shù)的單調(diào)性求出其最大值,即可證出;(2)由(1)知:,再變形即可得出小問1詳解】因?yàn)?,∴在上單調(diào)遞減,又因,故當(dāng)時,;當(dāng)時,,所以在上單調(diào)遞增,在上單調(diào)遞減,所以.【小問2詳解】由(1)知:,兩邊同乘以a得:,∴,即.21、(1)證明見解析;(2).【解析】(1)過作面,連接,結(jié)合題設(shè)易知,根據(jù)過面外一點(diǎn)在該面上垂線性質(zhì)知重合,再應(yīng)用面面垂直的判定證明結(jié)論.(2)面中過作,結(jié)合題設(shè)構(gòu)建空間直角坐標(biāo)系,設(shè)并確定相關(guān)點(diǎn)坐標(biāo),求面、面法向量,應(yīng)用空間向量夾角的坐標(biāo)表示列方程求參數(shù),最后由棱錐體積公式求體積.【小問1詳解】由題設(shè),易知:△是等腰直角三角形,即,將△沿BD折起過程中使直線AB與平面BCD所成的角為45°,此時過作面,連接,如下圖示,所以,在△中,又且面,因?yàn)檫^平面外一點(diǎn)有且只有一條垂線段,故重合,此時面,又面,故平面ABD平面BCD;【小問2詳解】在平面中過作,由(1)結(jié)論可構(gòu)建如下圖示的空間直角坐標(biāo)系

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論