湖南省茶陵縣三中2025屆數(shù)學高二上期末調(diào)研試題含解析_第1頁
湖南省茶陵縣三中2025屆數(shù)學高二上期末調(diào)研試題含解析_第2頁
湖南省茶陵縣三中2025屆數(shù)學高二上期末調(diào)研試題含解析_第3頁
湖南省茶陵縣三中2025屆數(shù)學高二上期末調(diào)研試題含解析_第4頁
湖南省茶陵縣三中2025屆數(shù)學高二上期末調(diào)研試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

湖南省茶陵縣三中2025屆數(shù)學高二上期末調(diào)研試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.橢圓的長軸長是短軸長的2倍,則離心率()A. B.C. D.2.圓關于直線l:對稱的圓的方程為()A. B.C. D.3.在等比數(shù)列{an}中,a1=8,a4=64,則a3等于()A.16 B.16或-16C.32 D.32或-324.某工廠去年的電力消耗為千瓦,由于設各更新,該工廠計劃每年比上一年的電力消耗減少,則從今年起,該工廠第5年消耗的電力為()A.m千瓦 B.m千瓦C.m千瓦 D.m千瓦5.橢圓上一點到一個焦點的距離為,則到另一個焦點的距離是()A. B.C. D.6.命題“”的一個充要條件是()A. B.C. D.7.已知是拋物線上的點,F(xiàn)是拋物線C的焦點,若,則()A1011 B.2020C.2021 D.20228.“”是“方程是圓的方程”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件9.已知雙曲線的離心率為2,則C的漸近線方程為()A. B.C. D.10.已知,則條件“”是條件“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件.11.德國數(shù)學家萊布尼茨是微積分的創(chuàng)立者之一,他從幾何問題出發(fā),引進微積分概念.在研究切線時認識到,求曲線的切線的斜率依賴于縱坐標的差值和橫坐標的差值,以及當此差值變成無限小時它們的比值,這也正是導數(shù)的幾何意義.設是函數(shù)f(x)的導函數(shù),若,對,且.總有,則下列選項正確的是()A. B.C. D.12.對任意實數(shù)k,直線與圓的位置關系是()A.相交 B.相切C.相離 D.與k有關二、填空題:本題共4小題,每小題5分,共20分。13.過拋物線的焦點作傾斜角為的直線,與拋物線分別交于兩點(點在軸上方),_________14.空間直角坐標系中,點,的坐標分別為,,則___________.15.矩形ABCD中,,在CD邊上任取一點M,則的最大邊是AB的概率為______16.已知,,,若,則______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)等差數(shù)列{an}的前n項和記為Sn,且.(1)求數(shù)列{an}的通項公式an(2)記數(shù)列的前n項和為Tn,若,求n的最小值.18.(12分)如圖,已知矩形ABCD所在平面外一點P,平面ABCD,E、F分別是AB、PC的中點求證:(1)共面;(2)求證:19.(12分)已知橢圓C:短軸長為2,且點在C上(1)求橢圓C的標準方程;(2)設、為橢圓的左、右焦點,過的直線l交橢圓C與A、B兩點,若的面積是,求直線l的方程20.(12分)已知圓.(1)過點作圓的切線,求切線的方程;(2)若直線過點且被圓截得的弦長為2,求直線的方程.21.(12分)如圖,在四棱錐P-ABCD中,PD⊥底面ABCD,AB∥CD,AB=2,CD=3,M為PC上一點,且PM=2MC.(1)求證:BM∥平面PAD;(2)若AD=2,PD=3,∠BAD=60°,求三棱錐P-ADM的體積22.(10分)已知等比數(shù)列滿足,.(Ⅰ)求的通項公式;(Ⅱ)若,設(),記數(shù)列的前n項和為,求.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】根據(jù)長軸長是短軸長的2倍,得到,利用離心率公式即可求得答案.【詳解】∵,∴,故,故選:D2、A【解析】首先求出圓的圓心坐標與半徑,再設圓心關于直線對稱的點的坐標為,即可得到方程組,求出、,即可得到圓心坐標,從而求出對稱圓的方程;【詳解】解:圓的圓心為,半徑,設圓心關于直線對稱的點的坐標為,則,解得,即圓關于直線對稱的圓的圓心為,半徑,所以對稱圓的方程為;故選:A3、C【解析】首先根據(jù)a4=a1q3,求得q=2,再由a3=即可得解.【詳解】由a4=a1q3,得q3=8,即q=2,所以a3==32.故選:C4、D【解析】根據(jù)等比數(shù)列的定義進行求解即可.【詳解】因為去年的電力消耗為千瓦,工廠計劃每年比上一年的電力消耗減少,所以今年的電力消耗為,因此從今年起,該工廠第5年消耗的電力為,故選:D5、B【解析】利用橢圓的定義可得結(jié)果.【詳解】在橢圓中,,由橢圓的定義可知,到另一個焦點的距離是.故選:B.6、D【解析】結(jié)合不等式的基本性質(zhì),利用充分條件和必要條件的定義判斷.【詳解】A.當時,滿足,推不出,故不充分;B.當時,滿足,推不出,故不充分;C.當時,推不出,故不必要;D.因為,故充要,故選:D7、C【解析】結(jié)合向量坐標運算以及拋物線的定義求得正確答案.【詳解】設,因為是拋物線上的點,F(xiàn)是拋物線C的焦點,所以,準線為:,因此,所以,即,由拋物線的定義可得,所以故選:C8、A【解析】利用充分條件和必要條件的定義判斷.【詳解】若方程表示圓,則,即,解得或,故“”是“方程是圓的方程”的充分不必要條件,故選:A9、A【解析】根據(jù)離心率及a,b,c的關系,可求得,代入即可得答案.【詳解】因為離心率,所以,所以,,則,所以C的漸近線方程為.故選:A10、A【解析】若命題,則p是q的充分不必要條件,q是p的必要不充分條件【詳解】因為,所以,所以.故選:A11、C【解析】由,得在上單調(diào)遞增,并且由的圖象是向上凸,進而判斷選項.【詳解】由,得在上單調(diào)遞增,因為,所以,故A不正確;對,,且,總有,可得函數(shù)的圖象是向上凸,可用如圖的圖象來表示,由表示函數(shù)圖象上各點處的切線的斜率,由函數(shù)圖象可知,隨著的增大,的圖象越來越平緩,即切線的斜率越來越小,所以,故B不正確;,表示點與點連線的斜率,由圖可知,所以C正確,同理,由圖可知,故D不正確.故選:C12、A【解析】判斷直線恒過定點,可知定點在圓內(nèi),即可判斷直線與圓的位置關系.【詳解】由可知,即該圓的圓心坐標為,半徑為,由可知,則該直線恒過定點,將點代入圓的方程可得,則點在圓內(nèi),則直線與圓的位置關系為相交.故選:.二、填空題:本題共4小題,每小題5分,共20分。13、3【解析】根據(jù)拋物線焦半徑公式,所以.故答案為:3.14、【解析】利用空間直角坐標系中兩點間的距離公式計算即得.【詳解】在空間直角坐標系中,因點,的坐標分別為,,所以.故答案為:15、【解析】先利用勾股定理得出滿足條件的長度,再結(jié)合幾何概型的概率公式得出答案.【詳解】設,當時,,;當時,,所以當?shù)降木嚯x都大于時,的最大邊是AB,所以的最大邊是AB的概率為.故答案為:16、【解析】根據(jù)題意,由向量坐標表示,列出方程,求出,,即可得出結(jié)果.【詳解】因為,,,若,則,解得,所以.故答案為:.【點睛】本題主要考查由向量坐標表示求參數(shù),屬于基礎題型.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)an=2n(2)100【解析】(1)由等差數(shù)列的通項公式列出方程組求解即可;(2)由裂項相消求和法得出,再由不等式的性質(zhì)得出n的最小值.【小問1詳解】設等差數(shù)列{an}的公差為d,依題意有解得,所以an=2n.【小問2詳解】由(1)得,則,所以因為,即,解得n>99,所以n的最小值為100.18、(1)詳見解析;(2)詳見解析.【解析】(1)以為原點,為軸,為軸,為軸,建立空間直角坐標系,設,,,求出,,,,0,,,,,從而,由此能證明共面(2)求出,0,,,,,由,能證明【詳解】證明:如圖,以A為原點,AB為x軸,AD為y軸,AP為z軸,建立空間直角坐標系,設,,,則0,,0,,2b,,2b,,0,,為AB的中點,F(xiàn)為PC的中點,0,,b,,b,,,2b,,共面.(2),【點睛】本題考查三個向量共面的證明,考查兩直線垂直的證明,是基礎題19、(1);(2)或.【解析】(1)根據(jù)短軸長求出b,根據(jù)M在C上求出a;(2)根據(jù)題意設直線l為,與橢圓方程聯(lián)立得根與系數(shù)關系,根據(jù)=即可求出m的值.【小問1詳解】∵短軸長為2,∴,∴,又∵點在C上,∴,∴,∴橢圓C的標準方程為;【小問2詳解】由(1)知,∵當直線l斜率為0時,不符合題意,∴設直線l的方程為:,聯(lián)立,消x得:,∵,∴設,,則,∵,∴,∴,即,解得,∴直線l的方程為:或.20、(1);(2)或.【解析】(1)根據(jù)直線與圓相切,求得切線的斜率,利用點斜式即可寫出切線方程;(2)利用弦長公式,結(jié)合已知條件求得直線的斜率,即可求得直線方程.【小問1詳解】圓,圓心,半徑,又點的坐標滿足圓方程,故可得點在圓上,則切線斜率滿足,又,故滿足題意的切線斜率,則過點的切線方程為,即.【小問2詳解】直線過點,若斜率不存在,此時直線的方程為,將其代入可得或,故直線截圓所得弦長為滿足題意;若斜率存在時,設直線方程為,則圓心到直線的距離,由弦長公式可得:,解得,也即,解得,則此時直線的方程為:.綜上所述,直線的方程為或.21、(1)證明見解析;(2).【解析】(1)過M作MN∥CD交PD于點N,證明四邊形ABMN為平行四邊形,即可證明BM∥平面PAD.(2)過B作AD的垂線,垂足為E,證明BE⊥平面PAD,在利用VP-ADM=VM-PAD求三棱錐P-ADM的體積.【詳解】解:(1)證明:如圖,過M作MN∥CD交PD于點N,連接AN.∵PM=2MC,∴MN=CD.又AB=CD,且AB∥CD∴AB∥MN∴四邊形ABMN為平行四邊形∴BM∥AN.又BM?平面PAD,AN?平面PAD∴BM∥平面PAD.(2)如圖,過B作AD的垂線,垂足為E.∵PD⊥平面ABCD,BE?平面ABCD∴PD⊥BE.又AD?平面PAD,PD?平面PAD,AD∩PD=D∴BE⊥平面PAD.由(1)知,BM∥平面PAD∴點M到平面PAD的距離等于點B到平面PAD的距離,即BE.連接BD,在△ABD中,AB=AD=2,∠BAD=60°,∴BE=則三棱錐P-ADM的體積VP-ADM=VM-PAD=×S△PAD×BE=×3×=.22、(Ⅰ)或;(Ⅱ).【解析】(Ⅰ)設等比數(shù)列的公比為q,由已知建立方程組,求得數(shù)列的首項和公比,從而求得數(shù)列的通項;(Ⅱ)由(Ⅰ)及已知可得和(),運用錯位相減法可求得數(shù)列的和【詳解】解:(Ⅰ)設等

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論