版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2025屆安徽省合肥市巢湖市數(shù)學高一上期末復(fù)習檢測試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.三個數(shù)20.3,0.32,log0.32的大小順序是A.0.32<log0.32<20.3 B.0.32<20.3<log0.32C.log0.32<20.3<0.32 D.log0.32<0.32<20.32.函數(shù)(且)的圖像必經(jīng)過點()A. B.C. D.3.已知扇形的圓心角為,面積為8,則該扇形的周長為()A.12 B.10C. D.4.已知,則下列選項中正確的是()A. B.C. D.5.已知集合和關(guān)系的韋恩圖如下,則陰影部分所表示的集合為()A. B.C. D.6.為了得到函數(shù)的圖象,只需將的圖象上的所有點A.橫坐標伸長2倍,再向上平移1個單位長度B.橫坐標縮短倍,再向上平移1個單位長度C.橫坐標伸長2倍,再向下平移1個單位長度D.橫坐標縮短倍,再向下平移1個單位長度7.在R上定義運算⊙:A⊙B=A(1-B),若不等式(x-a)⊙(x+a)<1對任意的實數(shù)x∈R恒成立,則實數(shù)a的取值范圍為()A.-1<a<1 B.0<a<2C.-<a< D.-<a<8.函數(shù)(A,ω,φ為常數(shù),A>0,ω>0,)的部分圖象如圖所示,則()A. B.C. D.9.函數(shù),的最小值是()A. B.C. D.10.已知角x的終邊上一點的坐標為(sin,cos),則角x的最小正值為()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知函數(shù),若函數(shù)恰有4個不同的零點,則實數(shù)的取值范圍是________.12.已知向量,寫出一個與共線的非零向量的坐標__________.13.將函數(shù)y=sin2x+π4的圖象上各點的縱坐標不變,橫坐標伸長到原來的14.若扇形的面積為9,圓心角為2弧度,則該扇形的弧長為______15.定義:關(guān)于的兩個不等式和的解集分別為和,則稱這兩個不等式為相連不等式.如果不等式與不等式為相連不等式,且,則_________16.已知,,則函數(shù)的值域為______三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.如圖,在直四棱柱ABCD-A1B1C1D1中,底面ABCD是邊長2的正方形,E,F(xiàn)分別為線段DD1,BD的中點(1)求證:EF∥平面ABD1;(2)AA1=,求異面直線EF與BC所成角的正弦值18.已知函數(shù)在上最大值為3,最小值為(1)求的解析式;(2)若,使得,求實數(shù)m的取值范圍19.如圖,正方形ABCD所在平面與半圓孤所在平面垂直,M是上異于C,D的點(1)證明:平面AMD⊥平面BMC;(2)若正方形ABCD邊長為1,求四棱錐M﹣ABCD體積的最大值20.(1)已知,求最大值(2)已知且,求的最小值21.已知函數(shù),,g(x)與f(x)互為反函數(shù).(1)若函數(shù)在區(qū)間內(nèi)有最小值,求實數(shù)m的取值范圍;(2)若函數(shù)y=h(g(x))在區(qū)間(1,2)內(nèi)有唯一零點,求實數(shù)m的取值范圍.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】由已知得:,,,所以.故選D.考點:指數(shù)函數(shù)和對數(shù)函數(shù)的圖像和性質(zhì).2、D【解析】根據(jù)指數(shù)函數(shù)的性質(zhì),求出其過的定點【詳解】解:∵(且),且令得,則函數(shù)圖象必過點,故選:D3、A【解析】利用已知條件求出扇形的半徑,即可得解周長【詳解】解:設(shè)扇形的半徑r,扇形OAB的圓心角為4弧度,弧長為:4r,其面積為8,可得4r×r=8,解得r=2扇形的周長:2+2+8=12故選:A4、A【解析】計算的取值范圍,比較范圍即可.【詳解】∴,,.∴.故選:A.5、B【解析】首先判斷出陰影部分表示,然后求得,再求得.【詳解】依題意可知,,且陰影部分表示.,所以.故選:B【點睛】本小題主要考查根據(jù)韋恩圖進行集合的運算,屬于基礎(chǔ)題.6、B【解析】由題意利用函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,得出結(jié)論【詳解】將的圖象上的所有點的橫坐標縮短倍(縱坐標不變),可得y=3sin2x的圖象;再向上平行移動個單位長度,可得函數(shù)的圖象,故選B【點睛】本題主要考查函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,熟記變換規(guī)律是關(guān)鍵,屬于基礎(chǔ)題7、C【解析】根據(jù)新定義把不等式轉(zhuǎn)化為一般的一元二次不等式,然后由一元二次不等式恒成立得結(jié)論【詳解】∵(x-a)⊙(x+a)=(x-a)(1-x-a),∴不等式(x-a)⊙(x+a)<1,即(x-a)(1-x-a)<1對任意實數(shù)x恒成立,即x2-x-a2+a+1>0對任意實數(shù)x恒成立,所以Δ=1-4(-a2+a+1)<0,解得,故選:C.8、B【解析】根據(jù)函數(shù)圖像易得,,求得,再將點代入即可求得得值.【詳解】解:由圖可知,,則,所以,所以,將代入得,所以,又,所以.故選:B.9、D【解析】利用基本不等式可求得的最小值.【詳解】,當且僅當時,即當時,等號成立,故函數(shù)的最小值為.故選:D.10、B【解析】先根據(jù)角終邊上點的坐標判斷出角的終邊所在象限,然后根據(jù)三角函數(shù)的定義即可求出角的最小正值【詳解】因為,,所以角的終邊在第四象限,根據(jù)三角函數(shù)的定義,可知,故角的最小正值為故選:B【點睛】本題主要考查利用角的終邊上一點求角,意在考查學生對三角函數(shù)定義的理解以及終邊相同的角的表示,屬于基礎(chǔ)題二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】本題首先可根據(jù)函數(shù)解析式得出函數(shù)在區(qū)間和上均有兩個零點,然后根據(jù)在區(qū)間上有兩個零點得出,最后根據(jù)函數(shù)在區(qū)間上有兩個零點解得,即可得出結(jié)果.【詳解】當時,令,得,即,該方程至多兩個根;當時,令,得,該方程至多兩個根,因為函數(shù)恰有4個不同的零點,所以函數(shù)在區(qū)間和上均有兩個零點,函數(shù)在區(qū)間上有兩個零點,即直線與函數(shù)在區(qū)間上有兩個交點,當時,;當時,,此時函數(shù)的值域為,則,解得,若函數(shù)在區(qū)間上也有兩個零點,令,解得,,則,解得,綜上所述,實數(shù)的取值范圍是,故答案為:.【點睛】本題考查根據(jù)函數(shù)零點數(shù)目求參數(shù)的取值范圍,可將其轉(zhuǎn)化為兩個函數(shù)的交點數(shù)目進行求解,考查函數(shù)最值的應(yīng)用,考查推理能力與計算能力,考查分類討論思想,是難題.12、(縱坐標為橫坐標2倍即可,答案不唯一)【解析】向量與共線的非零向量的坐標縱坐標為橫坐標2倍,例如(2,4)故答案為13、f【解析】利用三角函數(shù)圖象的平移和伸縮變換即可得正確答案.【詳解】函數(shù)y=sin2x+π得到y(tǒng)=sin再向右平移π4個單位,得到y(tǒng)=故最終所得到的函數(shù)解析式為:fx故答案為:fx14、6【解析】先由已知求出半徑,從而可求出弧長【詳解】設(shè)扇形所在圓的半徑為,因為扇形的面積為9,圓心角為2弧度,所以,得,所以該扇形的弧長為,故答案為:615、#?!窘馕觥慷尾坏仁浇獾倪吔缰导礊榕c之對應(yīng)的二次方程的根,利用根與系數(shù)的關(guān)系可得,整理得,結(jié)合范圍判定求值【詳解】設(shè)的解集為,則的解集為由二次方程根與系數(shù)的關(guān)系可得∴,即∴,即又∵,則∴,即故答案為:16、【解析】,又,∴,∴故答案為三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明過程詳見解析(2)【解析】(1)先證明EF∥D1B,即證EF∥平面ABD1.(2)先證明∠D1BC是異面直線EF與BC所成的角(或所成角的補角),再解三角形求其正弦值.【詳解】(1)證明:連結(jié)BD1,在△DD1B中,E、F分別是D1D、DB的中點,∴EF是△DD1B的中位線,∴EF∥D1B,∵D1B?平面ABC1D1,EF平面ABD1,∴EF∥平面ABD1(2)∵AA1=,AB=2,EF∥BD1,∴∠D1BC是異面直線EF與BC所成的角(或所成角的補角),在直四棱柱ABCD-A1B1C1D1中,BC⊥平面CDD1C1,CD1?平面CDD1C1,∴BC⊥CD1.在Rt△D1C1C中,BC=2,CD1=,D1C⊥BC,∴sin∠D1BC=,【點睛】本題主要考查空間直線平面位置關(guān)系的證明和異面直線所成角的計算,意在考查學生對這些知識的掌握水平和分析推理能力.18、(1)(2)【解析】(1)根據(jù)的最值列方程組,解方程組求得,進而求得.(2)利用分離常數(shù)法,結(jié)合基本不等式求得的取值范圍.【小問1詳解】的開口向上,對稱軸為,所以在區(qū)間上有:,即,所以.【小問2詳解】依題意,使得,即,由于,,當且僅當時等號成立.所以.19、(1)證明見解析;(2).【解析】(1)先證明BC⊥平面CMD,推出DM⊥BC,然后證明DM⊥平面BMC,由線面垂直推出面面垂直;(2)當M位于半圓弧CD的中點處時,四棱錐M﹣ABCD的高最大,體積也最大,相應(yīng)數(shù)值代入棱錐的體積公式即可得解.【詳解】(1)證明:由題設(shè)知,平面CMD⊥平面ABCD,交線為CD,∵BC⊥CD,BC在平面ABCD內(nèi),∴BC⊥平面CMD,故DM⊥BC,又DM⊥CM,BC∩CM=C,∴DM⊥平面BMC,又DM在平面AMD內(nèi),∴平面AMD⊥平面BMC;(2)依題意,當M位于半圓弧CD的中點處時,四棱錐M﹣ABCD的高最大,體積也最大,因為正方形邊長為1,所以半圓的半徑為,此時四棱錐M﹣ABCD的體積為,故四棱錐M﹣ABCD體積的最大值為【點睛】本題考查面面垂直的證明,需轉(zhuǎn)化為證明線面垂直,考查棱錐的體積計算,屬于中檔題.20、(1)1;(2)2【解析】(1)由基本不等式求出最小值后可得所求最大值(2)湊出積為定值后由基本不等式求得最小值【詳解】(1),則,,當且僅當,即時等號成立.所以的最大值為1(2)因為且,所以,當且僅當,即時等號成立.所以所求最小值為221、(1);(2).【解析】(1)根據(jù)二次函數(shù)的性質(zhì)研究情況下的單調(diào)性和值域,根據(jù)對數(shù)復(fù)合函數(shù)的單
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度園林景觀害蟲控制合作協(xié)議書4篇
- 二零二五版藥品零售企業(yè)員工保密及競業(yè)禁止協(xié)議4篇
- 2025年度新能源電池回收利用合作協(xié)議范本4篇
- 二零二五年度船舶租賃與船舶交易中介服務(wù)合同3篇
- 2025年度網(wǎng)絡(luò)安全防護系統(tǒng)采購合同4篇
- 2025年度大理石石材行業(yè)行業(yè)標準制定合同3篇
- 2025年度冷鏈物流配送合同范本模板(含貨物追溯系統(tǒng))3篇
- 二零二五版面粉行業(yè)供應(yīng)鏈金融服務(wù)合同4篇
- 2025年度個人借款合同續(xù)貸操作流程解析4篇
- 二零二五年度汽車維修配件欠款追償合同范本4篇
- GB/T 11072-1989銻化銦多晶、單晶及切割片
- GB 15831-2006鋼管腳手架扣件
- 有機化學機理題(福山)
- 醫(yī)學會自律規(guī)范
- 商務(wù)溝通第二版第4章書面溝通
- 950項機電安裝施工工藝標準合集(含管線套管、支吊架、風口安裝)
- 微生物學與免疫學-11免疫分子課件
- 《動物遺傳育種學》動物醫(yī)學全套教學課件
- 弱電工程自檢報告
- 民法案例分析教程(第五版)完整版課件全套ppt教學教程最全電子教案
- 7.6用銳角三角函數(shù)解決問題 (2)
評論
0/150
提交評論