版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
學校________________班級____________姓名____________考場____________準考證號學校________________班級____________姓名____________考場____________準考證號…………密…………封…………線…………內…………不…………要…………答…………題…………第1頁,共3頁漢中市重點中學2024年數(shù)學九上開學監(jiān)測試題題號一二三四五總分得分批閱人A卷(100分)一、選擇題(本大題共8個小題,每小題4分,共32分,每小題均有四個選項,其中只有一項符合題目要求)1、(4分)下列各組數(shù)中不能作為直角三角形三邊長的是()A.5,13,12 B.3,1,2 C.6,7,10 D.3,4,52、(4分)由下列條件不能判定△ABC為直角三角形的是()A.∠A+∠B=∠C B.∠A:∠B:∠C=1:3:2C.a(chǎn)=2,b=3,c=4 D.(b+c)(b-c)=a23、(4分)如圖,在△ABC中,∠ACB=90°,分別以AB、BC、AC為底邊在△ABC外部畫等腰直角三角形,三個等腰直角三角形的面積分別是S1、S2、S3,則S1、S2、S3之間的關系是()A. B. C. D.4、(4分)如圖,在中,是的中點,,,則的長為()A. B.4 C. D.5、(4分)下面與是同類二次根式的是()A. B. C. D.6、(4分)如圖,在中,兩個頂點在軸的上方,點的坐標是.以點為位似中心,在軸的下方作的位似,圖形,使得的邊長是的邊長的2倍.設點的橫坐標是-3,則點的橫坐標是()A.2 B.3 C.4 D.57、(4分)如圖,點,,,在一次函數(shù)的圖象上,它們的橫坐標分別是-1,0,3,7,分別過這些點作軸、軸的垂線,得到三個矩形,那么這三個矩形的周長和為()A. B.52 C.48 D.8、(4分)如圖,將含30°角的直角三角尺ABC繞點B順時針旋轉150°后得到△EBD,連接CD.若AB=4cm.則△BCD的面積為()A.4 B.2 C.3 D.2二、填空題(本大題共5個小題,每小題4分,共20分)9、(4分)如圖是本地區(qū)一種產(chǎn)品30天的銷售圖象,圖1是產(chǎn)品日銷售量y(單位:件)與時間t(單位:天)的函數(shù)關系,圖2是一件產(chǎn)品的銷售利潤z(單位,元)與時間t(單位:天)的函數(shù)關系,已知日銷售利潤=日銷售量×一件產(chǎn)品的銷售利潤,下列正確結論的序號是____.①第24天的銷售量為200件;②第10天銷售一件產(chǎn)品的利潤是15元;③第12天與第30天這兩天的日銷售利潤相等;④第30天的日銷售利潤是750元.10、(4分)12位參加歌唱比賽的同學的成績各不相同,按成績取前6名進入決賽,如果小亮知道了自己的成績后,要判斷能否進入決賽,在平均數(shù)、眾數(shù)、中位數(shù)和方差四個統(tǒng)計量中,小亮應該最關注的一個統(tǒng)計量是_____.11、(4分)若反比例函數(shù)y=的圖象經(jīng)過A(﹣2,1)、B(1,m)兩點,則m=________.12、(4分)觀察下面的變形規(guī)律:12+1=2-1,13+2=3-2,14+3=4-解答下面的問題:(1)若n為正整數(shù),請你猜想1n+1(2)計算:(13、(4分)如圖,購買“黃金1號”王米種子,所付款金額y元與購買量x(千克)之間的函數(shù)圖象由線段OA和射線AB組成,則購買1千克“黃金1號”玉米種子需付款___元,購買4千克“黃金1號”玉米種子需___元.三、解答題(本大題共5個小題,共48分)14、(12分)(課題研究)旋轉圖形中對應線段所在直線的夾角(小于等于的角)與旋轉角的關系.(問題初探)線段繞點順時針旋轉得線段,其中點與點對應,點與點對應,旋轉角的度數(shù)為,且.(1)如圖(1)當時,線段、所在直線夾角為______.(2)如圖(2)當時,線段、所在直線夾角為_____.(3)如圖(3),當時,直線與直線夾角與旋轉角存在著怎樣的數(shù)量關系?請說明理由;(形成結論)旋轉圖形中,當旋轉角小于平角時,對應線段所在直線的夾角與旋轉角_____.(運用拓廣)運用所形成的結論求解下面的問題:(4)如圖(4),四邊形中,,,,,,試求的長度.15、(8分)如圖,在△ABC中,∠B=90°,點P從點A開始沿AB邊向點B以1㎝/秒的速度移動,同時點Q從點B開始沿BC邊向點C以2㎝/秒的速度移動.()(1)如果ts秒時,PQ//AC,請計算t的值.(2)如果ts秒時,△PBQ的面積等于S㎝2,用含t的代數(shù)式表示S.(3)PQ能否平分△ABC的周長?如果能,請計算出t值,不能,說明理由.16、(8分)如圖,在四邊形ABCD中,AD//BC,∠D=90°,E為邊BC上一點,且EC=AD,連接(1)求證:四邊形AECD是矩形;
(2)若AC平分∠DAB,AB=5,EC=2,求AE的長,17、(10分)如圖,一塊四邊形的土地,其中∠BAD=90°,AB=4m,BC=12m,CD=13m,AD=3m.(1)試說明BD⊥BC;(2)求這塊土地的面積.18、(10分)問題探究(1)請在圖①中作出兩條直線,使它們將圓面四等分;(2)如圖②,是正方形內一定點,請在圖②中作出兩條直線(要求其中一條直線必須過點),使它們將正方形的面積四等分:問題解決(3)如圖③,在四邊形中,,點是的中點如果,且,那么在邊上足否存在一點,使所在直線將四邊形的面積分成相等的兩部分?若存在,求出的長:若不存在,說明理由.B卷(50分)一、填空題(本大題共5個小題,每小題4分,共20分)19、(4分)若是關于的一元二次方程的一個根,則____.20、(4分)將反比例函數(shù)的圖像繞著原點O順時針旋轉45°得到新的雙曲線圖像(如圖1所示),直線軸,F(xiàn)為x軸上的一個定點,已知,圖像上的任意一點P到F的距離與直線l的距離之比為定值,記為e,即.(1)如圖1,若直線l經(jīng)過點B(1,0),雙曲線的解析式為,且,則F點的坐標為__________.(2)如圖2,若直線l經(jīng)過點B(1,0),雙曲線的解析式為,且,P為雙曲線在第一象限內圖像上的動點,連接PF,Q為線段PF上靠近點P的三等分點,連接HQ,在點P運動的過程中,當時,點P的坐標為__________.21、(4分)甲乙兩地9月上旬的日平均氣溫如圖所示,則甲乙兩地這10天日平均氣溫方差大小關系為________.(填“>”或“<”)22、(4分)為參加2018年“宜賓市初中畢業(yè)生升學體育考試”,小聰同學每天進行立定跳遠練習,并記錄下其中7天的最好成績(單位:m)分別為:2.21,2.12,2.1,2.39,2.1,2.40,2.1.這組數(shù)據(jù)的中位數(shù)和眾數(shù)分別是_____.23、(4分)如圖,∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PD=3cm,則PC的長為_____cm.二、解答題(本大題共3個小題,共30分)24、(8分)如圖,在平行四邊形ABCD中(AB>AD),AF平分∠DAB,交CD于點F,DE平分∠ADC,交AB于點E,AF與DE交于點O,連接EF(1)求證:四邊形AEFD為菱形;(2)若AD=2,AB=3,∠DAB=60°,求平行四邊形ABCD的面積.25、(10分)五一期間,甲、乙兩人分別騎自行車和摩托車從地出發(fā)前往地郊游,并以各自的速度勻速行駛,到達目的地停止,途中乙休息了一段時間,然后又繼續(xù)趕路.甲、乙兩人各自行駛的路程與所用時間之間的函數(shù)圖象如圖所示.(1)甲騎自行車的速度是_____.(2)求乙休息后所行的路程與之間的函數(shù)關系式,并寫出自變量的取值范圍.(3)為了保證及時聯(lián)絡,甲、乙兩人在第一次相遇時約定此后兩人之間的路程不超過.甲、乙兩人是否符合約定,并說明理由.26、(12分)某市某水果批發(fā)市場某批發(fā)商原計劃以每千克10元的單價對外批發(fā)銷售某種水果.為了加快銷售,該批發(fā)商對價格進行兩次下調后,售價降為每千克6.4元.(1)求平均每次下調的百分率;(2)某大型超市準備到該批發(fā)商處購買2噸該水果,因數(shù)量較多,該批發(fā)商決定再給予兩種優(yōu)惠方案以供選擇.方案一:打八折銷售;方案二:不打折,每噸優(yōu)惠現(xiàn)金1000元.試問超市采購員選擇哪種方案更優(yōu)惠?請說明理由.
參考答案與詳細解析一、選擇題(本大題共8個小題,每小題4分,共32分,每小題均有四個選項,其中只有一項符合題目要求)1、C【解析】
由勾股定理的逆定理,只要驗證兩小邊的平方和等于最長邊的平方即可.【詳解】解:A、52+122=132,故不是直角三角形,故選項正確;B、32+12=22,故是直角三角形,故選項錯誤;C、62+72≠102,故是直角三角形,故選項錯誤;D、32+42=52,故是直角三角形,故選項錯誤.故選:C.本題考查勾股定理的逆定理的應用.判斷三角形是否為直角三角形,已知三角形三邊的長,只要利用勾股定理的逆定理加以判斷即可.2、C【解析】
由勾股定理的逆定理,只要驗證兩小邊的平方和等于最長邊的平方或最大角是否是90°即可.【詳解】A、∠A+∠B=∠C,可得∠C=90°,是直角三角形,錯誤;B、∠A:∠B:∠C=1:3:2,可得∠B=90°,是直角三角形,錯誤;C、∵22+32≠42,故不能判定是直角三角形,正確;D、∵(b+c)(b﹣c)=a2,∴b2﹣c2=a2,即a2+c2=b2,故是直角三角形,錯誤;故選C.本題考查勾股定理的逆定理的應用.判斷三角形是否為直角三角形,已知三角形三邊的長,只要利用勾股定理的逆定理加以判斷即可.3、B【解析】
根據(jù)勾股定理可得AB2=AC2+BC2,再根據(jù)等腰直角三角形的性質和三角形的面積公式計算,即可得到答案.【詳解】解:如圖,在Rt△ABC中,由勾股定理,得:AB2=AC2+BC2,∵△ABF、△BEC、△ADC都是等腰直角三角形,∴S1=AF2=AB2,S2=EC2=BC2,S3=AD2=AC2,∴S2+S3=BC2+AC2=(BC2+AC2)=AB2,∴S2+S3=S1.故選:B.本題考查了等腰直角三角形的性質和勾股定理以及三角形的面積等知識,屬于基本題型,熟練掌握勾股定理和等腰直角三角形的性質是解題關鍵.4、D【解析】
根據(jù)相似三角形的判定和性質定理和線段中點的定義即可得到結論.【詳解】解:∵∠ADC=∠BAC,∠C=∠C,
∴△BAC∽△ADC,
∴,
∵D是BC的中點,BC=6,
∴CD=3,
∴AC2=6×3=18,
∴AC=,
故選:D.本題考查相似三角形的判定和性質,線段中點的定義,熟練掌握相似三角形的判定和性質是解題的關鍵.5、B【解析】
根據(jù)同類二次根式的定義,先將各選項化為最簡二次根式,再看被開方數(shù)是否相同即可.【詳解】解:A、與被開方數(shù)不同,不是同類二次根式;B、與被開方數(shù)相同,是同類二次根式;C、=3與被開方數(shù)不同,不是同類二次根式;D、與被開方數(shù)不同,不是同類二次根式.此題主要考查了同類二次根式的定義即化成最簡二次根式后,被開方數(shù)相同.這樣的二次根式叫做同類二次根式.6、B【解析】
設點B′的橫坐標為x,然后根據(jù)△A′B′C與△ABC的位似比為2列式計算即可求解.【詳解】設點B′的橫坐標為x,∵△ABC的邊長放大到原來的2倍得到△A′B′C,點C的坐標是(-1,0),∴x-(-1)=2[(-1)-(-1)],即x+1=2(-1+1),解得x=1,所以點B的對應點B′的橫坐標是1.故選B.本題考查了位似變換,坐標與圖形的性質,根據(jù)位似比列出方程是解題的關鍵.7、C【解析】
根據(jù)一次函數(shù)的圖像與直角坐標系坐標特點即可求解.【詳解】由題意可得,.∴.故選C.此題主要考查一次函數(shù)的圖像,解題的關鍵是熟知直角坐標系的特點.8、C【解析】
過D點作BE的垂線,垂足為F,由∠ABC=30°及旋轉角∠ABE=150°可知∠CBE為平角.在Rt△ABC中,AB=4,∠ABC=30°,則AC=2,BC=2,由旋轉的性質可知BD=BC=2,DE=AC=2,BE=AB=4,由面積法:DF×BE=BD×DE求DF,則S△BCD=×BC×DF.【詳解】過D點作BE的垂線,垂足為F,∵∠ABC=30°,∠ABE=150°,∴∠CBE=∠ABC+∠ABE=180°.在Rt△ABC中,∵AB=4,∠ABC=30°,∴AC=2,BC=2,由旋轉的性質可知:BD=BC=2,DE=AC=2,BE=AB=4,由DF×BE=BD×DE,即DF×4=2×2,解得:DF=,S△BCD=×BC×DF=×2×=3(cm2).故選C.本題考查了旋轉的性質,解直角三角形的方法,解答本題的關鍵是圍繞求△BCD的面積確定底和高的值,有一定難度.二、填空題(本大題共5個小題,每小題4分,共20分)9、①②④.【解析】
圖1是產(chǎn)品日銷售量y(單位:件)與時間t單位:天)的函數(shù)圖象,觀察圖象可對①做出判斷;通過圖2求出z與t的函數(shù)關系式,求出當t=10時z的值,對②做出判斷,通過圖1求出當0≤t≤24時,產(chǎn)品日銷售量y與時間t的函數(shù)關系式,分別求出第12天和第30天的銷售利潤,對③④進行判斷,最后綜合各個選項得出答案.【詳解】解:圖1反應的是日銷售量y與時間t之間的關系圖象,過(24,200),因此①是正確的,
由圖2可得:z=,當t=10時,z=15,因此②也是正確的,當0≤t≤24時,設產(chǎn)品日銷售量y(單位:件)與時間t(單位;天)的函數(shù)關系為y=kt+b,
把(0,100),(24,200)代入得:,
解得:,
∴y=t+100(0≤t≤24),
當t=12時,y=150,z=-12+25=13,
∴第12天的日銷售利潤為;150×13=1950(元),第30天的銷售利潤為:150×5=750元,
因此③不正確,④正確,
故答案為:①②④.本題考查一次函數(shù)的應用,分段函數(shù)的意義和應用以及待定系數(shù)法求函數(shù)的關系式等知識,正確的識圖,分段求出相應的函數(shù)關系式是解決問題的關鍵.10、中位數(shù)【解析】
參賽選手要想知道自己是否能進入前6名,只需要了解自己的成績與全部成績的中位數(shù)的大小即可.【詳解】解:由于總共有12個人,且他們的分數(shù)互不相同,要判斷是否進入前6名,只要把自己的成績與中位數(shù)進行大小比較.故應知道中位數(shù)的多少即可,故答案為:中位數(shù).本題主要考查統(tǒng)計的有關知識,主要包括平均數(shù)、中位數(shù)、眾數(shù)、方差的意義.11、-2【解析】
將點A代入反比例函數(shù)解出k值,再將B的坐標代入已知反比例函數(shù)解析式,即可求得m的值.【詳解】解:∵反比例函數(shù)y=,它的圖象經(jīng)過A(-2,1),∴1=,∴k=-2∴y=,將B點坐標代入反比例函數(shù)得,m=,∴m=-2,故答案為-2.本題考查了反比例函數(shù)圖象上點的坐標特征:反比例函數(shù)(k是常數(shù),k≠0)的圖象是雙曲線,圖象上的點(x,y)的橫縱坐標的積是定值k,即xy=k.12、(1)、n+1-【解析】試題分析:(1)根據(jù)所給等式確定出一般規(guī)律,寫出即可;(2)先將各式分母有理化,此時發(fā)現(xiàn)除第二項和倒數(shù)第二項外,其他各項的和為0,故可求出答案.解:(1)﹣(2)原式=[(﹣1)+(﹣)+(﹣)+…+(﹣)](+1)=(﹣1)(+1)=()2﹣12=2016﹣1=1.點睛:本題主要考查了代數(shù)式的探索與規(guī)律,二次根式的混合運算,根據(jù)所給的等式找到規(guī)律是解題的關鍵.13、51.【解析】
由圖象可求出當0≤x≤2時,y與x的函數(shù)關系式為y=5x,當x>2時,y與x的函數(shù)關系式為y=4x+2,然后根據(jù)所求解析式分別求出當x=1和x=4時y的值即可.【詳解】解:當0≤x≤2時,設y與x的函數(shù)關系式為y=kx,2k=10,得k=5,∴當0≤x≤2時,y與x的函數(shù)關系式為y=5x,當x=1時,y=5×1=5,當x>2時,設y與x的函數(shù)關系式為y=ax+b,,得,即當x>2時,y與x的函數(shù)關系式為y=4x+2,當x=4時,y=4×4+2=1,故答案為:5,1.一次函數(shù)在實際生活中的應用是本題的考點,根據(jù)圖象求出函數(shù)解析式是解題的關鍵.三、解答題(本大題共5個小題,共48分)14、(1)90°;(2)60°;(3)互補,理由見解析;相等或互補;(4).【解析】
(1)通過作輔助線如圖1,延長DC交AB于F,交BO于E,可以通過旋轉性質得到AB=CD,OA=OC,BO=DO,證明△AOB≌△COD,進而求得∠B=∠D得∠BFE=∠EOD=90°(2)通過作輔助線如圖2,延長DC交AB于F,交BO于E,同(1)得∠BFE=∠EOD=60°(3)通過作輔助線如圖3,直線與直線所夾的銳角與旋轉角互補,延長,交于點通過證明得,再通過平角的定義和四邊形內角和定理,證得;形成結論:通過問題(1)(2)(3)可以總結出旋轉圖形中,當旋轉角小于平角時,對應線段所在直線的夾角與旋轉角相等或互補;(4)通過作輔助線如圖:將繞點順時針旋轉,使得與重合,得到,連接,延長,交于點,可得,進一步得到△BDF是等邊三角形,,再利用勾股定理求得.【詳解】(1)解:(1)如圖1,延長DC交AB于F,交BO于E,
∵α=90°
∴∠BOD=90°
∵線段AB繞點O順時針旋轉得線段CD,
∴AB=CD,OA=OC,BO=DO
∴△AOB≌△COD(SSS)
∴∠B=∠D
∵∠B=∠D,∠OED=∠BEF
∴∠BFE=∠EOD=90°
故答案為:90°
(2)如圖2,延長DC交AB于F,交BO于E,
∵α=60°
∴∠BOD=60°
∵線段AB繞點O順時針旋轉得線段CD,
∴AB=CD,OA=OC,BO=DO
∴△AOB≌△COD(SSS)
∴∠B=∠D
∵∠B=∠D,∠OED=∠BEF
∴∠BFE=∠EOD=60°
故答案為:60°(3)直線與直線所夾的銳角與旋轉角互補,延長,交于點∵線段繞點順時針旋轉得線段,∴,,∴∴∴∵∴∴∴直線與直線所夾的銳角與旋轉角互補;形成結論:旋轉圖形中,當旋轉角小于平角時,對應線段所在直線的夾角與旋轉角相等或互補;(4)將繞點順時針旋轉,使得與重合,得到,連接,延長,交于點,∴旋轉角為,∴,,,∴△BDF是等邊三角形,∵,,∴,∴.本題是三角形綜合題,考查了旋轉的性質,全等三角形的判定和性質,等邊三角形的判定和性質等知識,添加輔助線構造全等三角形是本題的關鍵.15、(1);(2)S=();(3)PQ不能平分△ABC的周長,理由見解析.【解析】
(1)由題意得,PB=6-t,BQ=2t,根據(jù)PQ∥AC,得到,代入相應的代數(shù)式計算求出t的值;(2)由題意得,PB=6-t,BQ=2t,根據(jù)三角形面積的計算公式,S△PBQ=BP×BQ,列出表達式即可;(3)由題意根據(jù)勾股定理求得AC=10cm,利用PB+BQ是△ABC周長的一半建立方程解答即可.【詳解】解:(1)由題意得,BP=6-t,BQ=2t,
∵PQ∥AC,
∴,即,
解得t=,
∴當t=時,PQ∥AC;(2)由題意得,PB=6-t,BQ=2t,∵∠B=90°,∴BP×BQ=×2t×(6-t)=,即ts秒時,S=();(3)PQ不能平分△ABC的周長.理由:∵在△ABC中,∠B=90°,AB=6cm,BC=8cm,
∴AC==10cm,設ts后直線PQ將△ABC周長分成相等的兩部分,則AP=tcm,BQ=2tcm,BP=(6-t)cm,由題意得
2t+6-t=×(6+8+10)
解得:t=6>4,
所以不存在直線PQ將△ABC周長分成相等的兩部分,即PQ不能平分△ABC的周長.本題考查勾股定理的應用、相似三角形的性質和三角形的面積,靈活運用相似三角形的性質,結合圖形求解是解題的關鍵.16、(1)證明見詳解;(2)4【解析】
(1)首先判定該四邊形為平行四邊形,然后得到∠D=90°,從而判定矩形;
(2)求得BE的長,在直角三角形ABE中利用勾股定理求得AE的長即可.【詳解】解:(1)證明:∵AD∥BC,EC=AD,
∴四邊形AECD是平行四邊形.
又∵∠D=90°,
∴四邊形AECD是矩形.(2)∵AC平分∠DAB.
∴∠BAC=∠DAC.
∵AD∥BC,
∴∠DAC=∠ACB.
∴∠BAC=∠ACB.
∴BA=BC=1.
∵EC=2,
∴BE=2.
∴在Rt△ABE中,AE=AB本題考查了矩形的判定及勾股定理的知識,解題的關鍵是利用矩形的判定定理判定四邊形是矩形,難度不大.17、(1)見解析;(2)36m2.【解析】
(1)先根據(jù)勾股定理求出BD的長度,然后根據(jù)勾股定理的逆定理,即可證明BD⊥BC;(2)根據(jù)兩個直角三角形的面積即可求解.【詳解】解:(1)在Rt△ABD中,∠BAD=90°,AB=4m,AD=3m,由勾股定理得:BD=5m,∵BC=12m,CD=13m,BD=5m.∴BD2+BC2=DC2,∴∠DBC=90°,即BD⊥BC;(2)四邊形ABCD的面積是S△ABD+S△BDC=.本題考查了勾股定理,勾股定理的逆定理,牢牢掌握這些定理是解答本題的要點.18、(1)答案見解析;(2)答案見解析;(3)存在,BQ=b【解析】
(1)畫出互相垂直的兩直徑即可;(2)連接AC、BD交于O,作直線OM,分別交AD于P,交BC于Q,過O作EF⊥OM交DC于F,交AB于E,則直線EF、OM將正方形的面積四等分,根據(jù)三角形的面積公式和正方形的性質求出即可;(3)當BQ=CD=b時,PQ將四邊形ABCD的面積二等份,連接BP并延長交CD的延長線于點E,證△ABP≌△DEP求出BP=EP,連接CP,求出S△BPC=S△EPC,作PF⊥CD,PG⊥BC,由BC=AB+CD=DE+CD=CE,求出S△BPC-S△CQP+S△ABP=S△CPE-S△DEP+S△CQP,即可得出S四邊形ABQP=S四邊形CDPQ即可.【詳解】解:(1)如圖1所示,(2)連接AC、BD交于O,作直線OM,分別交AD于P,交BC于Q,過O作EF⊥OM交DC于F,交AB于E,則直線EF、OM將正方形的面積四等分,理由是:∵點O是正方形ABCD的對稱中心,∴AP=CQ,EB=DF,在△AOP和△EOB中∵∠AOP=90°-∠AOE,∠BOE=90°-∠AOE,∴∠AOP=∠BOE,∵OA=OB,∠OAP=∠EBO=45°,∴△AOP≌△EOB,∴AP=BE=DF=CQ,設O到正方形ABCD一邊的距離是d,則(AP+AE)d=(BE+BQ)d=(CQ+CF)d=(PD+DF)d,∴S四邊形AEOP=S四邊形BEOQ=S四邊形CQOF=S四邊形DPOF,直線EF、OM將正方形ABCD面積四等份;(3)存在,當BQ=CD=b時,PQ將四邊形ABCD的面積二等份,理由是:如圖③,連接BP并延長交CD的延長線于點E,∵AB∥CD,∴∠A=∠EDP,∵在△ABP和△DEP中∴△ABP≌△DEP(ASA),∴BP=EP,連接CP,∵△BPC的邊BP和△EPC的邊EP上的高相等,又∵BP=EP,∴S△BPC=S△EPC,作PF⊥CD,PG⊥BC,則BC=AB+CD=DE+CD=CE,由三角形面積公式得:PF=PG,在CB上截取CQ=DE=AB=a,則S△CQP=S△DEP=S△ABP∴S△BPC-S△CQP+S△ABP=S△CPE-S△DEP+S△CQP即:S四邊形ABQP=S四邊形CDPQ,∵BC=AB+CD=a+b,∴BQ=b,∴當BQ=b時,直線PQ將四邊形ABCD的面積分成相等的兩部分.本題考查了正方形性質,菱形性質,三角形的面積等知識點的應用,主要考查學生綜合運用性質進行推理的能力,注意:等底等高的三角形的面積相等.一、填空題(本大題共5個小題,每小題4分,共20分)19、0【解析】
根據(jù)一元二次方程的解即可計算求解.【詳解】把x=-2代入方程得,解得k=1或0,∵k2-1≠0,k≠±1,∴k=0此題主要考查一元二次方程的解,解題的關鍵是熟知一元二次方程二次項系數(shù)不為0.20、F(4,0)【解析】
(1)令y=0求出x的值,結合e=2可得出點A的坐標,由點B的坐標及e=2可求出AF的長度,將其代入OF=OB+AB+AF中即可求出點F的坐標;
(2)設點P的坐標為(x,),則點H的坐標為(1,),由Q為線段PF上靠近點P的三等分點,可得出點Q的坐標為(x+,),利用兩點間的距離公式列方程解答即可;【詳解】解:(1)如圖:當y=0時,±,
解得:x1=2,x2=-2(舍去),
∴點A的坐標為(2,0).
∵點B的坐標為(1,0),
∴AB=1.
∵e=2,
∴,
∴AF=2,
∴OF=OB+AB+AF=4,
∴F點的坐標為(4,0).
故答案為:(4,0).(2)設點P的坐標為(x,),則點H的坐標為(1,).
∵點Q為線段PF上靠近點P的三等分點,點F的坐標為(5,0),
∴點Q的坐標為(x+,).
∵點H的坐標為(1,),HQ=HP,
∴(x+-1)2+(-)2=[(x-1)]2,
化簡得:15x2-48x+39=0,
解得:x1=,x2=1(舍去),
∴點P的坐標為(,).故答案為:(,).本題考查了兩點間的距離、解一元二次方程以及反比例函數(shù)的綜合應用,解題的關鍵是:(1)利用特殊值法(點A和點P重合),求出點F的坐標;(2)設出點P的坐標,利用兩點間的距離公式找出關于x的一元二次方程;21、>【解析】
觀察平均氣溫統(tǒng)計圖可知:乙地的平均氣溫比較穩(wěn)定,波動??;波動越小越穩(wěn)定.【詳解】解:觀察平均氣溫統(tǒng)計圖可知:乙地的平均氣溫比較穩(wěn)定,波動??;則乙地的日平均氣溫的方差小,故S2甲>S2乙.故答案為:>.本題考查方差的意義.方差是用來衡量一組數(shù)據(jù)波動大小的量,方差越大,表明這組數(shù)據(jù)偏離平均數(shù)越大,即波動越大,數(shù)據(jù)越不穩(wěn)定.反之,方差越小,表明這組數(shù)據(jù)分布比較集中,各數(shù)據(jù)偏離平均數(shù)越小,即波動越小,數(shù)據(jù)越穩(wěn)定.22、2.40,2.1.【解析】∵把7天的成績從小到大排列為:2.12,2.21,2.39,2.40,2.1,2.1,2.1.∴它們的中位數(shù)為2.40,眾數(shù)為2.1.故答案為2.40,2.1.點睛:本題考查了中位數(shù)和眾數(shù)的求法,如果一組數(shù)據(jù)有奇數(shù)個,那么把這組數(shù)據(jù)從小到大排列后,排在中間位置的數(shù)是這組數(shù)據(jù)的中位數(shù);如果一組數(shù)據(jù)有偶數(shù)個,那么把這組數(shù)據(jù)從小到大排列后,排在中間位置的兩個數(shù)的平均數(shù)是這組數(shù)據(jù)的中位數(shù).一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)是這組數(shù)據(jù)的眾數(shù).23、1【解析】
如圖,作PH⊥OB于H.由角平分線的性質定理推出PH=PD=3cm,再證明∠PCH=30°即可解決問題.【詳解】解:如圖,作PH⊥OB于H.∵∠POA=∠POB,PH⊥OB,PD⊥OA,∴PH=PD=3cm,∵PC∥OA,∴∠POA=∠CPO=15°,∴∠PCH=∠COP+∠CPO=30°,∵∠PHC=90°,∴PC=2PH=1cm.故答案為1.本題考查角平分線的性質,平行線的性質,等腰三角形的判定和性質,直角三角形30度角的性質等知識,解題的關鍵是學會添加常用輔助線,屬于中考??碱}型.二、解答題(本大題共3個小題,共30分)24、(1)見解析;(2)33.【解析】
(1)根據(jù)平行四邊形的性質得到AB∥CD,得到∠EAF=∠DFA,根據(jù)角平分線的定義得到∠DAF=∠EAF,求
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024廣東省林地流轉買賣合同
- 2024法律顧問委托合同
- 2024民間抵押借款合同民間借貸合同范本
- 2024房屋裝修合同(范本)
- 新車銷售合同范本樣式
- 不動產(chǎn)抵押借款合同范本解析
- 2024蔬菜買賣合同示范文本
- 2024年墻面裝飾分包工程合同
- 合租住房協(xié)議書樣本
- 投資項目資金監(jiān)管合同
- 2023超星爾雅-大學生創(chuàng)新基礎-馮林全部答案
- 趙珍珠《商業(yè)銀行-金融企業(yè)會計》第二版課后參考答案 (第二到十一章)
- 大班科學《紅薯現(xiàn)形記》課件
- GB/T 43336-2023舵輪控制系統(tǒng)通用技術條件
- JGJT294-2013 高強混凝土強度檢測技術規(guī)程
- 2022-2023學年天津市某中學高三上學期第二次月考英語試題(解析版)
- 揚州某校2023-2024蘇教版五年級上冊數(shù)學期中課堂練習及答案
- 《數(shù)字影音處理》課程標準
- 電動叉車堆垛車日常點檢表
- 2022年1月浙江高考讀后續(xù)寫分析課件-2023屆高三英語寫作專項突破
- 危險化學品和煙花爆竹安全管理
評論
0/150
提交評論