2025屆北京市第三十九中學高三數(shù)學第一學期期末學業(yè)水平測試模擬試題含解析_第1頁
2025屆北京市第三十九中學高三數(shù)學第一學期期末學業(yè)水平測試模擬試題含解析_第2頁
2025屆北京市第三十九中學高三數(shù)學第一學期期末學業(yè)水平測試模擬試題含解析_第3頁
2025屆北京市第三十九中學高三數(shù)學第一學期期末學業(yè)水平測試模擬試題含解析_第4頁
2025屆北京市第三十九中學高三數(shù)學第一學期期末學業(yè)水平測試模擬試題含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆北京市第三十九中學高三數(shù)學第一學期期末學業(yè)水平測試模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若執(zhí)行如圖所示的程序框圖,則輸出的值是()A. B. C. D.42.已知,若方程有唯一解,則實數(shù)的取值范圍是()A. B.C. D.3.在棱長為a的正方體中,E、F、M分別是AB、AD、的中點,又P、Q分別在線段、上,且,設平面平面,則下列結論中不成立的是()A.平面 B.C.當時,平面 D.當m變化時,直線l的位置不變4.設集合,集合,則=()A. B. C. D.R5.設α,β為兩個平面,則α∥β的充要條件是A.α內有無數(shù)條直線與β平行B.α內有兩條相交直線與β平行C.α,β平行于同一條直線D.α,β垂直于同一平面6.已知排球發(fā)球考試規(guī)則:每位考生最多可發(fā)球三次,若發(fā)球成功,則停止發(fā)球,否則一直發(fā)到次結束為止.某考生一次發(fā)球成功的概率為,發(fā)球次數(shù)為,若的數(shù)學期望,則的取值范圍為()A. B. C. D.7.點為棱長是2的正方體的內切球球面上的動點,點為的中點,若滿足,則動點的軌跡的長度為()A. B. C. D.8.若P是的充分不必要條件,則p是q的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件9.已知函數(shù),關于的方程R)有四個相異的實數(shù)根,則的取值范圍是(

)A. B. C. D.10.已知函數(shù),若,則等于()A.-3 B.-1 C.3 D.011.已知Sn為等比數(shù)列{an}的前n項和,a5=16,a3a4=﹣32,則S8=()A.﹣21 B.﹣24 C.85 D.﹣8512.閱讀如圖的程序框圖,若輸出的值為25,那么在程序框圖中的判斷框內可填寫的條件是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.(5分)在平面直角坐標系中,過點作傾斜角為的直線,已知直線與圓相交于兩點,則弦的長等于____________.14.已知實數(shù)x,y滿足(2x-y)2+4y15.等腰直角三角形內有一點P,,,,,則面積為______.16.的展開式中,若的奇數(shù)次冪的項的系數(shù)之和為32,則________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)運輸一批海鮮,可在汽車、火車、飛機三種運輸工具中選擇,它們的速度分別為60千米/小時、120千米/小時、600千米/小時,每千米的運費分別為20元、10元、50元.這批海鮮在運輸過程中每小時的損耗為m元(),運輸?shù)穆烦虨镾(千米).設用汽車、火車、飛機三種運輸工具運輸時各自的總費用(包括運費和損耗費)分別為(元)、(元)、(元).(1)請分別寫出、、的表達式;(2)試確定使用哪種運輸工具總費用最省.18.(12分)已知都是各項不為零的數(shù)列,且滿足其中是數(shù)列的前項和,是公差為的等差數(shù)列.(1)若數(shù)列是常數(shù)列,,,求數(shù)列的通項公式;(2)若是不為零的常數(shù)),求證:數(shù)列是等差數(shù)列;(3)若(為常數(shù),),.求證:對任意的恒成立.19.(12分)在平面直角坐標系中,已知橢圓的中心為坐標原點焦點在軸上,右頂點到右焦點的距離與它到右準線的距離之比為.(1)求橢圓的標準方程;(2)若是橢圓上關于軸對稱的任意兩點,設,連接交橢圓于另一點.求證:直線過定點并求出點的坐標;(3)在(2)的條件下,過點的直線交橢圓于兩點,求的取值范圍.20.(12分)a,b,c分別為△ABC內角A,B,C的對邊.已知a=3,,且B=60°.(1)求△ABC的面積;(2)若D,E是BC邊上的三等分點,求.21.(12分)設函數(shù),是函數(shù)的導數(shù).(1)若,證明在區(qū)間上沒有零點;(2)在上恒成立,求的取值范圍.22.(10分)已知函數(shù).(1)若函數(shù)不存在單調遞減區(qū)間,求實數(shù)的取值范圍;(2)若函數(shù)的兩個極值點為,,求的最小值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】

模擬程序運行,觀察變量值的變化,得出的變化以4為周期出現(xiàn),由此可得結論.【詳解】;如此循環(huán)下去,當時,,此時不滿足,循環(huán)結束,輸出的值是4.故選:D.【點睛】本題考查程序框圖,考查循環(huán)結構.解題時模擬程序運行,觀察變量值的變化,確定程序功能,可得結論.2、B【解析】

求出的表達式,畫出函數(shù)圖象,結合圖象以及二次方程實根的分布,求出的范圍即可.【詳解】解:令,則,則,故,如圖示:由,得,函數(shù)恒過,,由,,可得,,,若方程有唯一解,則或,即或;當即圖象相切時,根據(jù),,解得舍去),則的范圍是,故選:.【點睛】本題考查函數(shù)的零點問題,考查函數(shù)方程的轉化思想和數(shù)形結合思想,屬于中檔題.3、C【解析】

根據(jù)線面平行與垂直的判定與性質逐個分析即可.【詳解】因為,所以,因為E、F分別是AB、AD的中點,所以,所以,因為面面,所以.選項A、D顯然成立;因為,平面,所以平面,因為平面,所以,所以B項成立;易知平面MEF,平面MPQ,而直線與不垂直,所以C項不成立.故選:C【點睛】本題考查直線與平面的位置關系.屬于中檔題.4、D【解析】試題分析:由題,,,選D考點:集合的運算5、B【解析】

本題考查了空間兩個平面的判定與性質及充要條件,滲透直觀想象、邏輯推理素養(yǎng),利用面面平行的判定定理與性質定理即可作出判斷.【詳解】由面面平行的判定定理知:內兩條相交直線都與平行是的充分條件,由面面平行性質定理知,若,則內任意一條直線都與平行,所以內兩條相交直線都與平行是的必要條件,故選B.【點睛】面面平行的判定問題要緊扣面面平行判定定理,最容易犯的錯誤為定理記不住,憑主觀臆斷,如:“若,則”此類的錯誤.6、A【解析】

根據(jù)題意,分別求出再根據(jù)離散型隨機變量期望公式進行求解即可【詳解】由題可知,,,則解得,由可得,答案選A【點睛】本題考查離散型隨機變量期望的求解,易錯點為第三次發(fā)球分為兩種情況:三次都不成功、第三次成功7、C【解析】

設的中點為,利用正方形和正方體的性質,結合線面垂直的判定定理可以證明出平面,這樣可以確定動點的軌跡,最后求出動點的軌跡的長度.【詳解】設的中點為,連接,因此有,而,而平面,,因此有平面,所以動點的軌跡平面與正方體的內切球的交線.正方體的棱長為2,所以內切球的半徑為,建立如下圖所示的以為坐標原點的空間直角坐標系:因此有,設平面的法向量為,所以有,因此到平面的距離為:,所以截面圓的半徑為:,因此動點的軌跡的長度為.故選:C【點睛】本題考查了線面垂直的判定定理的應用,考查了立體幾何中軌跡問題,考查了球截面的性質,考查了空間想象能力和數(shù)學運算能力.8、B【解析】

試題分析:通過逆否命題的同真同假,結合充要條件的判斷方法判定即可.由p是的充分不必要條件知“若p則”為真,“若則p”為假,根據(jù)互為逆否命題的等價性知,“若q則”為真,“若則q”為假,故選B.考點:邏輯命題9、A【解析】=,當時時,單調遞減,時,單調遞增,且當,當,

當時,恒成立,時,單調遞增且,方程R)有四個相異的實數(shù)根.令=則,,即.10、D【解析】分析:因為題設中給出了的值,要求的值,故應考慮兩者之間滿足的關系.詳解:由題設有,故有,所以,從而,故選D.點睛:本題考查函數(shù)的表示方法,解題時注意根據(jù)問題的條件和求解的結論之間的關系去尋找函數(shù)的解析式要滿足的關系.11、D【解析】

由等比數(shù)列的性質求得a1q4=16,a12q5=﹣32,通過解該方程求得它們的值,求首項和公比,根據(jù)等比數(shù)列的前n項和公式解答即可.【詳解】設等比數(shù)列{an}的公比為q,∵a5=16,a3a4=﹣32,∴a1q4=16,a12q5=﹣32,∴q=﹣2,則,則,故選:D.【點睛】本題主要考查等比數(shù)列的前n項和,根據(jù)等比數(shù)列建立條件關系求出公比是解決本題的關鍵,屬于基礎題.12、C【解析】

根據(jù)循環(huán)結構的程序框圖,帶入依次計算可得輸出為25時的值,進而得判斷框內容.【詳解】根據(jù)循環(huán)程序框圖可知,則,,,,,此時輸出,因而不符合條件框的內容,但符合條件框內容,結合選項可知C為正確選項,故選:C.【點睛】本題考查了循環(huán)結構程序框圖的簡單應用,完善程序框圖,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

方法一:依題意,知直線的方程為,代入圓的方程化簡得,解得或,從而得或,則.方法二:依題意,知直線的方程為,代入圓的方程化簡得,設,則,故.方法三:將圓的方程配方得,其半徑,圓心到直線的距離,則.14、2【解析】

直接利用柯西不等式得到答案.【詳解】根據(jù)柯西不等式:2x-y2+4y當2x-y=2y,即x=328故答案為:2.【點睛】本題考查了柯西不等式求最值,也可以利用均值不等式,三角換元求得答案.15、【解析】

利用余弦定理計算,然后根據(jù)平方關系以及三角形面積公式,可得結果.【詳解】設由題可知:由,,,所以化簡可得:則或,即或由,所以所以故答案為:【點睛】本題主要考查余弦定理解三角形,仔細觀察,細心計算,屬基礎題.16、【解析】試題分析:由已知得,故的展開式中x的奇數(shù)次冪項分別為,,,,,其系數(shù)之和為,解得.考點:二項式定理.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1),,.(2)當時,此時選擇火車運輸費最省;當時,此時選擇飛機運輸費用最??;當時,此時選擇火車或飛機運輸費用最省.【解析】

(1)將運費和損耗費相加得出總費用的表達式.(2)作差比較、的大小關系得出結論.【詳解】(1),,.(2),故,恒成立,故只需比較與的大小關系即可,令,故當,即時,,即,此時選擇火車運輸費最省,當,即時,,即,此時選擇飛機運輸費用最省.當,即時,,,此時選擇火車或飛機運輸費用最省.【點睛】本題考查了常見函數(shù)的模型,考查了分類討論的思想,屬于基礎題.18、(1);(2)詳見解析;(3)詳見解析.【解析】

(1)根據(jù),可求得,再根據(jù)是常數(shù)列代入根據(jù)通項與前項和的關系求解即可.(2)取,并結合通項與前項和的關系可求得再根據(jù)化簡可得,代入化簡即可知,再證明也成立即可.(3)由(2)當時,,代入所給的條件化簡可得,進而證明可得,即數(shù)列是等比數(shù)列.繼而求得,再根據(jù)作商法證明即可.【詳解】解:.是各項不為零的常數(shù)列,則,則由,及得,當時,,兩式作差,可得.當時,滿足上式,則;證明:,當時,,兩式相減得:即.即.又,,即.當時,,兩式相減得:.數(shù)列從第二項起是公差為的等差數(shù)列.又當時,由得,當時,由,得.故數(shù)列是公差為的等差數(shù)列;證明:由,當時,,即,,,即,即,當時,即.故從第二項起數(shù)列是等比數(shù)列,當時,..另外,由已知條件可得,又,,因而.令,則.故對任意的恒成立.【點睛】本題主要考查了等差等比數(shù)列的綜合運用,需要熟練運用通項與前項和的關系分析數(shù)列的遞推公式繼而求解通項公式或證明等差數(shù)列等.同時也考查了數(shù)列中的不等式證明等,需要根據(jù)題意分析數(shù)列為等比數(shù)列并求出通項,再利用作商法證明.屬于難題.19、(1);(2)證明詳見解析,;(3).【解析】

(1)根據(jù)題意列出關于的等式求解即可.(2)先根據(jù)對稱性,直線過的定點一定在軸上,再設直線的方程為,聯(lián)立直線與橢圓的方程,進而求得的方程,并代入,化簡分析即可.(3)先分析過點的直線斜率不存在時的值,再分析存在時,設直線的方程為,聯(lián)立直線與橢圓的方程,得出韋達定理再代入求解出關于的解析式,再求解范圍即可.【詳解】解:設橢圓的標準方程焦距為,由題意得,由,可得則,所以橢圓的標準方程為;證明:根據(jù)對稱性,直線過的定點一定在軸上,由題意可知直線的斜率存在,設直線的方程為,聯(lián)立,消去得到,設點,則.所以,所以的方程為,令得,將,代入上式并整理,,整理得,所以,直線與軸相交于定點.當過點的直線的斜率不存在時,直線的方程為,此時,當過點的直線斜率存在時,設直線的方程為,且在橢圓上,聯(lián)立方程組,消去,整理得,則.所以所以,所以,由得,綜上可得,的取值范圍是.【點睛】本題主要考查了橢圓的基本量求解以及定值和范圍的問題,需要分析直線的斜率是否存在的情況,再聯(lián)立直線與橢圓的方程,根據(jù)韋達定理以及所求的解析式,結合參數(shù)的范圍進行求解.屬于難題.20、(1);(2)【解析】

(1)根據(jù)正弦定理,可得△ABC為直角三角形,然后可計算b,可得結果.(2)計算,然后根據(jù)余弦定理,可得,利用平方關系,可得結果.【詳解】(1)△ABC中,由csinC=asinA+bsinB,利用正弦定理得c2=a2+b2,所以△ABC是直角三角形.又a=3,B=60°,所以;所以△ABC的面積為.(2)設D靠近點B,則BD=DE=EC=1.,所以所以.【點睛】本題考查正弦定理的應用,屬基礎題.21、(1)證明見解析(2)【解析】

(1)先利用導數(shù)的四則運算法則和導數(shù)公式求出,再由函數(shù)的導數(shù)可知,函數(shù)在上單調遞增,在上單調遞減,而,,可知在區(qū)間上恒成立,即在區(qū)間上沒有零點;(2)由題意可將轉化為,構造函數(shù),利用導數(shù)討論研究其在上的單調性,由,即可求出的取值范圍.【詳

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論