版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
四川省榮縣中學(xué)2025屆數(shù)學(xué)高二上期末調(diào)研試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.將一枚均勻的骰子先后拋擲3次,至少出現(xiàn)兩次點數(shù)為3的概率為()A. B.C. D.2.雙曲線的離心率為,則其漸近線方程為A. B.C. D.3.已知,,2成等差數(shù)列,則在平面直角坐標系中,點M(x,y)的軌跡為()A. B.C. D.4.《九章算術(shù)》中的“商功”篇主要講述了以立體幾何為主的各種形體體積的計算,其中塹堵是指底面為直角三角形的直棱柱.如圖,在塹堵中,M是的中點,,,,若,則()A. B.C. D.5.若,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件6.在如圖所示的莖葉圖中,若甲組數(shù)據(jù)的眾數(shù)為16,則乙組數(shù)據(jù)的平均數(shù)為()A.12 B.10C.8 D.67.某研究所為了研究近幾年中國留學(xué)生回國人數(shù)的情況,對2014至2018年留學(xué)生回國人數(shù)進行了統(tǒng)計,數(shù)據(jù)如下表:年份20142015201620172018年份代碼12345留學(xué)生回國人數(shù)/萬36.540.943.348.151.9根據(jù)上述統(tǒng)計數(shù)據(jù)求得留學(xué)生回國人數(shù)(單位:萬)與年份代碼滿足的線性回歸方程為,利用回歸方程預(yù)測年留學(xué)生回國人數(shù)為()A.63.14萬 B.64.72萬C.66.81萬 D.66.94萬8.已知集合,,則()A. B.C. D.9.圓關(guān)于直線對稱,則的最小值是()A. B.C. D.10.已知函數(shù),為的導(dǎo)數(shù),則()A.-1 B.1C. D.11.函數(shù)f(x)=的圖象大致形狀是()A. B.C. D.12.已知一個圓錐的體積為,任取該圓錐的兩條母線a,b,若a,b所成角的最大值為,則該圓錐的側(cè)面積為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.圓(x+2)2+y2=4與圓(x-2)2+(y-1)2=9的位置關(guān)系為________14.已知函數(shù)的圖象上有一點,則曲線在點處的切線方程為______.15.設(shè)為等差數(shù)列的前n項和,若,,則______16.已知空間向量,,若,則______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖所示,在直三棱柱中,是等腰直角三角形,(1)證明:;(2)若點E是棱的中點,求平面與平面所成銳二面角的余弦值18.(12分)已知圓心在直線上,且過點、(1)求的標準方程;(2)已知過點的直線被所截得的弦長為4,求直線的方程19.(12分)如圖,在三棱錐中,平面平面,,都是等腰直角三角形,,,,分別為,的中點.(1)求證:平面;(2)求證:平面.20.(12分)在平面直角坐標系xOy中,已知橢圓的離心率為,且短軸長為2.(1)求橢圓C的方程;(2)設(shè)橢圓C的上頂點為B,右焦點為F,直線l與橢圓交于M,N兩點,問是否存在直線l,使得F為的垂心,若存在,求出直線l的方程;若不存在,說明理由.21.(12分)已知等差數(shù)列滿足(1)求的通項公式;(2)設(shè),求數(shù)列的前n項和22.(10分)在正方體中,E,F(xiàn)分別是,的中點(1)求證:∥平面;(2)求平面與平面EDC所成的二面角的正弦值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】利用次獨立重復(fù)試驗中事件A恰好發(fā)生次的概率計算公式直接求解.【詳解】解:將一枚均勻的篩子先后拋擲3次,每次出現(xiàn)點數(shù)為3的概率都是至少出現(xiàn)兩次點數(shù)為3的概率為:故選:D2、A【解析】分析:根據(jù)離心率得a,c關(guān)系,進而得a,b關(guān)系,再根據(jù)雙曲線方程求漸近線方程,得結(jié)果.詳解:因為漸近線方程為,所以漸近線方程為,選A.點睛:已知雙曲線方程求漸近線方程:.3、A【解析】已知,,2成等差數(shù)列,得到,化簡得到【詳解】已知,,2成等差數(shù)列,得到,化簡得到可知是焦點在x軸上的拋物線的一支.故答案為A.【點睛】這個題目考查的是對數(shù)的運算以及化簡公式的應(yīng)用,也涉及到了軌跡的問題,求點的軌跡,通常是求誰設(shè)誰,再根據(jù)題干將等量關(guān)系轉(zhuǎn)化為代數(shù)關(guān)系,從而列出方程,化簡即可.4、C【解析】建立坐標系,坐標表示向量,求出點坐標,進而求出結(jié)果.【詳解】以為坐標原點,,,的方向分別為x,y,z軸的正方向建立空間直角坐標系.不妨令,則,,,,,.因為,所以,則,,,,則解得,,,故.故選:C5、C【解析】利用函數(shù)在上單調(diào)遞減即可求解.【詳解】解:因為函數(shù)在上單調(diào)遞減,所以若,,則;反之若,,則.所以若,則“”是“”的充要條件,故選:C.6、A【解析】根據(jù)眾數(shù)的概念,求得的值,再根據(jù)平均數(shù)的計算公式,即可求解.【詳解】由題意,甲組數(shù)據(jù)的眾數(shù)為16,得,所以乙組數(shù)據(jù)的平均數(shù)為故選:A.7、D【解析】先求出樣本點的中心,代入線性回歸方程即可求出,再將代入線性回歸方程即可得到結(jié)果【詳解】由題意知:,,所以樣本點的中心為,所以,解得:,可得線性回歸方程為,年對應(yīng)的年份代碼為,令,則,所以預(yù)測2022年留學(xué)生回國人數(shù)為66.94萬,故選:D.8、A【解析】由已知得,因為,所以,故選A9、C【解析】先求出圓的圓心坐標,根據(jù)條件可得直線過圓心,從而可得,然后由,展開利用均值不等式可得答案.【詳解】由圓可得標準方程為,因為圓關(guān)于直線對稱,該直線經(jīng)過圓心,即,,,當且僅當,即時取等號,故選:C.10、B【解析】由導(dǎo)數(shù)的乘法法則救是導(dǎo)函數(shù)后可得結(jié)論【詳解】解:由題意,,所以.故選:B11、B【解析】利用函數(shù)的奇偶性排除選項A,C,然后利用特殊值判斷即可【詳解】解:由題得函數(shù)的定義域為,關(guān)于原點對稱.所以函數(shù)是奇函數(shù),排除選項A,C.當時,,排除選項D,故選:B12、B【解析】設(shè)圓錐的母線長為R,底面半徑長為r,由題可知圓錐的軸截面是等邊三角形,根據(jù)體積公式計算可得,利用扇形的面積公式計算即可求得結(jié)果.【詳解】如圖,設(shè)圓錐的母線長為R,底面半徑長為r,由題可知圓錐的軸截面是等邊三角形,所以,圓錐的體積,解得,所以該圓錐的側(cè)面積為.故選:B二、填空題:本題共4小題,每小題5分,共20分。13、相交【解析】由題意知,兩圓的圓心分別為(-2,0),(2,1),故兩圓的圓心距離為,兩圓的半徑之差為1,半徑之和為5,而1<<5,所以兩圓的位置關(guān)系為相交14、【解析】利用導(dǎo)數(shù)求得為增函數(shù),根據(jù),求得,進而求得,得出即在點處的切線的斜率,再利用直線的點斜式方程,即可求解【詳解】由題意,點在曲線上,可得,又由函數(shù),則,所以函數(shù)在上為增函數(shù),且,所以,因為,所以,即在點處的切線的斜率為2,所以曲線在點的切線方程為,即.故答案為:【點睛】本題主要考查了利用導(dǎo)數(shù)求解曲線在某點處的切線方程,其中解答中熟記導(dǎo)數(shù)的幾何意義,以及導(dǎo)數(shù)的運算公式,結(jié)合直線的點斜式方程是解答的關(guān)鍵,著重考查了推理與運算能力15、36【解析】利用等差數(shù)列前n項和的性質(zhì)進行求解即可.【詳解】因為為等差數(shù)列的前n項和,所以也成等差數(shù)列,即成等差數(shù)列,所以,故答案為:16、2【解析】依據(jù)向量垂直充要條件列方程,解之即可解決.【詳解】空間向量,,由,可知,即,解之得故答案為:2三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】(1)根據(jù)線面垂直的判定定理證出平面,即可證得;(2)以A為原點,分別以所在直線為x軸,y軸,z軸建立空間直角坐標系,根據(jù)二面角的向量公式即可求出【小問1詳解】如圖,連接,由已知可得四邊形是正方形,所以在直三棱柱中,平面平面,交線為,在中,可知,所以平面,于因為,所以平面,而平面,所以【小問2詳解】如圖所示,以A為原點,分別以所在直線為x軸,y軸,z軸建立空間直角坐標系,則,于是設(shè)平面的法向量為,則,可取而平面的一個法向量為,所以故平面與平面所成銳二面角的余弦值為18、(1);(2)或.【解析】(1)由、兩點坐標求出直線的垂直平分線的方程與直線上聯(lián)立可得圓心坐標,由兩點間距離公式求出半徑,即可得圓的標準方程;(2)設(shè)直線的方程,求出圓心到直線的距離,再由垂徑定理結(jié)合勾股定理列方程求出的值,即可得直線的方程【詳解】由點、可得中點坐標為,,所以直線的垂直平分線的斜率為,可得直線的垂直平分線的方程為:即,由可得:,所以圓心為,,所以的標準方程為,(2)設(shè)直線的方程為即,圓心到直線的距離,則可得,即,解得:或,所以直線的方程為或,即或19、(1)證明見解析(2)證明見解析【解析】(1)由三角形的中位線定理可證得MN∥AB,再由線面垂直的判定定理可證得結(jié)論,(2)由已知可得AB⊥BC,VC⊥AC,再由已知結(jié)合面面垂直的性質(zhì)定理可得VC⊥平面ABC,從而有AB⊥VC,然后由線面垂直的判定定理可證得結(jié)論【小問1詳解】證明:∵M,N分別為VA,VB的中點,∴MN∥AB,∵AB?平面CMN,MN?平面CMN,∴AB∥平面CMN【小問2詳解】證明:∵△ABC和△VAC均是等腰直角三角形,AB=BC,AC=CV,∴AB⊥BC,VC⊥AC,∵平面VAC⊥平面ABC,平面VAC∩平面ABC=AC,∴VC⊥平面ABC,∵AB?平面ABC,∴AB⊥VC,又VC∩BC=C,∴AB⊥平面VBC20、(1)(2)存在,【解析】(1)根據(jù)離心率及短軸長,利用橢圓中的關(guān)系可以求出橢圓方程;(2)設(shè)直線的方程,與橢圓方程聯(lián)立,根據(jù)一元二次方程根與系數(shù)關(guān)系,結(jié)合已知和斜率公式,可以求出直線的方程.【小問1詳解】,,,,橢圓的標準方程為.【小問2詳解】由已知可得,,,∴,∵,設(shè)直線的方程為:,代入橢圓方程整理得,設(shè),,則,,∵,∴.即,因為,,即..所以,或.又時,直線過點,不合要求,所以.故存在直線:滿足題設(shè)條件.21、(1)(2)【解析】(1)設(shè)等差數(shù)列的公差為d,由題意得列出方程組,可求得的值,代入公式,即可得答案.(2)由(1)可得,利用等比數(shù)列的定義,可證數(shù)列為等比數(shù)列,結(jié)合前n項和公式,即可得答案.【小問1詳解】設(shè)等差數(shù)列的公差為d,由題意得,解得,所以通項公式【小問2詳解】由(1)可得,,又,所以數(shù)列是以4為首項,4為公比的等比數(shù)列,所以22、(1)見解析;(2).【解析】(1)連接,,連接
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024-2030年雙缸液壓舉升機公司技術(shù)改造及擴產(chǎn)項目可行性研究報告
- 2024-2030年全自動石油產(chǎn)品閃點和燃點試驗器搬遷改造項目可行性研究報告
- 2024-2030年全球及中國黑胡椒粉行業(yè)銷售現(xiàn)狀及前景趨勢預(yù)測報告
- 2024-2030年全球及中國紫外線固化材料行業(yè)供需前景及發(fā)展趨勢預(yù)測報告
- 2024-2030年全球及中國水產(chǎn)預(yù)混飼料行業(yè)營銷形勢及需求規(guī)模預(yù)測報告
- 2024-2030年全球及中國智慧停車引導(dǎo)系統(tǒng)行業(yè)發(fā)展規(guī)模及投資前景展望報告
- 2024-2030年全球及中國多壁聚碳酸酯板行業(yè)產(chǎn)銷規(guī)模及需求前景預(yù)測報告
- 2024-2030年全球及中國厄他培南行業(yè)銷售情況及需求規(guī)模預(yù)測報告版
- 2024-2030年全球及中國公共區(qū)域用自動體外除顫器行業(yè)前景趨勢及投資動態(tài)分析報告
- 2024-2030年全球及中國乙氧基化烷基硫酸鈉行業(yè)運行態(tài)勢與需求趨勢預(yù)測報告
- 2024湖南省電子信息產(chǎn)業(yè)研究院招聘3人高頻難、易錯點500題模擬試題附帶答案詳解
- 安全月度例會匯報材料模板
- 2024年保安員證考試題庫及答案(共130題)
- 山東法院服務(wù)保障中國(山東)自由貿(mào)易試驗區(qū)建設(shè)白皮書2019-2024
- 2025屆北京數(shù)學(xué)六年級第一學(xué)期期末質(zhì)量檢測試題含解析
- 人教版2024七年級上冊生物期末復(fù)習(xí)背誦提綱
- 流行病學(xué)學(xué)習(xí)通超星期末考試答案章節(jié)答案2024年
- 2024年事業(yè)單位考試公共基礎(chǔ)知識題庫300題(附答案與解析)
- 血液透析遠期并發(fā)癥及處理
- 防范工貿(mào)行業(yè)典型事故三十條措施解讀
- 四川快速INTL2000電梯控制系統(tǒng)電氣系統(tǒng)圖
評論
0/150
提交評論