廣西梧州市2025屆高二數(shù)學(xué)第一學(xué)期期末達(dá)標(biāo)檢測(cè)試題含解析_第1頁
廣西梧州市2025屆高二數(shù)學(xué)第一學(xué)期期末達(dá)標(biāo)檢測(cè)試題含解析_第2頁
廣西梧州市2025屆高二數(shù)學(xué)第一學(xué)期期末達(dá)標(biāo)檢測(cè)試題含解析_第3頁
廣西梧州市2025屆高二數(shù)學(xué)第一學(xué)期期末達(dá)標(biāo)檢測(cè)試題含解析_第4頁
廣西梧州市2025屆高二數(shù)學(xué)第一學(xué)期期末達(dá)標(biāo)檢測(cè)試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

廣西梧州市2025屆高二數(shù)學(xué)第一學(xué)期期末達(dá)標(biāo)檢測(cè)試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.我國(guó)新冠肺炎疫情防控進(jìn)入常態(tài)化,各地有序進(jìn)行疫苗接種工作,下面是我國(guó)甲、乙兩地連續(xù)11天的疫苗接種指數(shù)折線圖,根據(jù)該折線圖,下列說法不正確的是()A.這11天甲地指數(shù)和乙地指數(shù)均有增有減B.第3天至第11天,甲地指數(shù)和乙地指數(shù)都超過80%C.在這11天期間,乙地指數(shù)的增量大于甲地指數(shù)的增量D.第9天至第11天,乙地指數(shù)的增量大于甲地指數(shù)的增量2.已知數(shù)列中,,,是的前n項(xiàng)和,則()A. B.C. D.3.等比數(shù)列,,,成公差不為0的等差數(shù)列,,則數(shù)列的前10項(xiàng)和()A. B.C. D.4.已知雙曲線左右焦點(diǎn)為,過的直線與雙曲線的右支交于,兩點(diǎn),且,若線段的中垂線過點(diǎn),則雙曲線的離心率為()A.3 B.2C. D.5.江西省重點(diǎn)中學(xué)協(xié)作體于2020年進(jìn)行了一次校際數(shù)學(xué)競(jìng)賽,共有100名同學(xué)參賽,經(jīng)過評(píng)判,這100名參賽者的得分都在之間,其得分的頻率分布直方圖如圖,則下列結(jié)論錯(cuò)誤的是()A.得分在之間的共有40人B.從這100名參賽者中隨機(jī)選取1人,其得分在的概率為0.5C.這100名參賽者得分的中位數(shù)為65D.可求得6.《九章算術(shù)》與《幾何原本》并稱現(xiàn)代數(shù)學(xué)的兩大源泉.在《九章算術(shù)》卷五商功篇中介紹了羨除(此處是指三面為等腰梯形,其他兩側(cè)面為直角三角形的五面體)體積的求法.在如圖所示的羨除中,平面是鉛垂面,下寬,上寬,深,平面BDEC是水平面,末端寬,無深,長(zhǎng)(直線到的距離),則該羨除的體積為()A. B.C. D.7.函數(shù)y=的最大值為Ae-1 B.eC.e2 D.8.當(dāng)實(shí)數(shù),m變化時(shí),的最大值是()A.3 B.4C.5 D.69.已知雙曲線的左焦點(diǎn)為,,為雙曲線的左、右頂點(diǎn),漸近線上的一點(diǎn)滿足,且,則雙曲線的離心率為()A. B.C. D.10.已知雙曲線的一條漸近線方程為,且與橢圓有公共焦點(diǎn).則C的方程為()A. B.C. D.11.已知F(3,0)是橢圓的一個(gè)焦點(diǎn),過F且垂直x軸的弦長(zhǎng)為,則該橢圓的方程為()A.+=1 B.+=1C.+=1 D.+=112.定義在R上的偶函數(shù)在上單調(diào)遞增,且,則滿足的x的取值范圍是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知單位空間向量,,滿足,.若空間向量滿足,且對(duì)于任意實(shí)數(shù),的最小值是2,則的最小值是___________.14.若雙曲線的漸近線方程為,則該雙曲線的離心率為___________;若,則雙曲線的右焦點(diǎn)到漸近線的距離為__________.15.若函數(shù)在處有極值,則的值為___________.16.牛頓迭代法又稱牛頓-拉夫遜方法,它是牛頓在17世紀(jì)提出的一種在實(shí)數(shù)集上近似求解方程根的一種方法.具體步驟如下:設(shè)r是函數(shù)y=f(x)的一個(gè)零點(diǎn),任意選取x0作為r的初始近似值,作曲線y=f(x)在點(diǎn)(x0,f(x0))處的切線l1,設(shè)l1與x軸交點(diǎn)的橫坐標(biāo)為x1,并稱x1為r的1次近似值;作曲線y=f(x)在點(diǎn)(x1,f(x1))處的切線l2,設(shè)l2與x軸交點(diǎn)的橫坐標(biāo)為x2,并稱x2為r的2次近似值.一般的,作曲線y=f(x)在點(diǎn)(xn,f(xn))(n∈N)處的切線ln+1,記ln+1與x軸交點(diǎn)的橫坐標(biāo)為xn+1,并稱xn+1為r的n+1次近似值.設(shè)f(x)=x3+x-1的零點(diǎn)為r,取x0=0,則r的2次近似值為________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列滿足且(1)求證:數(shù)列為等差數(shù)列,并求數(shù)列的通項(xiàng)公式;(2)設(shè),求數(shù)列的前n項(xiàng)和為.18.(12分)已知函數(shù)(1)解關(guān)于的不等式;(2)若不等式在上有解,求實(shí)數(shù)的取值范圍19.(12分)平行六面體,(1)若,,,,,,求長(zhǎng);(2)若以頂點(diǎn)A為端點(diǎn)的三條棱長(zhǎng)均為2,且它們彼此的夾角都是60°,則AC與所成角的余弦值20.(12分)如圖,在四棱錐中,底面,底面是邊長(zhǎng)為2的正方形,,F(xiàn),G分別是,的中點(diǎn)(1)求證:平面;(2)求平面與平面的夾角的大小21.(12分)已知等差數(shù)列滿足,.(1)求數(shù)列的通項(xiàng)公式;(2)設(shè),求數(shù)列的前n項(xiàng)和.22.(10分)已知函數(shù)(1)討論函數(shù)的單調(diào)性;(2)若對(duì)任意的,都有成立,求的取值范圍

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】由折線圖逐項(xiàng)分析得到答案.【詳解】對(duì)于選項(xiàng)A,從折線圖中可以直接觀察出甲地和乙地的指數(shù)有增有減,故選項(xiàng)A正確;對(duì)于選項(xiàng)B,從第3天至第11天,甲地指數(shù)和乙地指數(shù)都超過80%,故選項(xiàng)B正確;對(duì)于選項(xiàng)C,從折線圖上可以看出這11天甲的增量大于乙的增量,故選項(xiàng)C錯(cuò)誤;對(duì)于選項(xiàng)D,從折線圖上可以看出第9天至第11天,乙地指數(shù)的增量大于甲地指數(shù)的增量,故D正確;故選:C.2、D【解析】由,得到為遞增數(shù)列,又由,得到,化簡(jiǎn),即可求解.【詳解】解:由,得,又,所以,所以,即,所以數(shù)列為遞增數(shù)列,所以,得,即,又由是的前項(xiàng)和,則.故選:D.【點(diǎn)睛】關(guān)鍵點(diǎn)睛:本題考查數(shù)列求和問題,關(guān)鍵在于由已知條件得出,運(yùn)用裂項(xiàng)相消求和法.3、C【解析】先設(shè)等比數(shù)列的公比為,結(jié)合條件可知,由等差中項(xiàng)可知,利用等比數(shù)列的通項(xiàng)公式進(jìn)行化簡(jiǎn)求出,最后利用分組求和法,以及等比數(shù)列、等差數(shù)列的求和公式,即可求出數(shù)列的前10項(xiàng)和.【詳解】設(shè)等比數(shù)列的公比為,,,成公差不為0的等差數(shù)列,則,,都不相等,,且,,,,即,解得:或(舍去),,所以數(shù)列的前10項(xiàng)和:.故選:C.4、C【解析】由雙曲線的定義得出中各線段長(zhǎng)(用表示),然后通過余弦定理得出的關(guān)系式,變形后可得離心率【詳解】由題意又則有:可得:,,中,中.可得:解得:則有:故選:C5、C【解析】根據(jù)給定的頻率分布直方圖,結(jié)合直方圖的性質(zhì),逐項(xiàng)計(jì)算,即可求解.【詳解】由頻率分布直方圖,可得A中,得分在之間共有人,所以A正確;B中,從100名參賽者中隨機(jī)選取1人,其得分在中的概率為,所以B正確;D中,由頻率分布直方圖的性質(zhì),可得,解得,所以D正確.C中,前2個(gè)小矩形面積之和為0.4,前3個(gè)小矩形面積之和為0.7,所以中位數(shù)在[60,70],這100名參賽者得分的中位數(shù)為,所以C不正確;故選:C.6、C【解析】在,上分別取點(diǎn),,使得,連接,,,把幾何體分割成一個(gè)三棱柱和一個(gè)四棱錐,然后由棱柱、棱錐體積公式計(jì)算【詳解】如圖,在,上分別取點(diǎn),,使得,連接,,,則三棱柱是斜三棱柱,該羨除的體積三棱柱四棱錐.故選:C【點(diǎn)睛】思路點(diǎn)睛:本題考查求空間幾何體的體積,解題思路是觀察幾何體的結(jié)構(gòu)特征,合理分割,將不規(guī)則幾何體體積的計(jì)算轉(zhuǎn)化為錐體、柱體體積的計(jì)算.考查了空間想象能力、邏輯思維能力、運(yùn)算求解能力7、A【解析】,所以函數(shù)在上遞增,在上遞減,所以函數(shù)的最大值為時(shí),y==故選A點(diǎn)睛:研究函數(shù)最值主要根據(jù)導(dǎo)數(shù)研究函數(shù)的單調(diào)性,找到最值,分式求導(dǎo)公式要記熟8、D【解析】根據(jù)點(diǎn)到直線的距離公式可知可以表示單位圓上點(diǎn)到直線的距離,利用圓的性質(zhì)結(jié)合圖形即得.【詳解】由題可知,可以表示單位圓上點(diǎn)到直線的距離,設(shè),因直線,即表示恒過定點(diǎn),根據(jù)圓的性質(zhì)可得.故選:D.9、C【解析】由雙曲線的漸近線方程和兩點(diǎn)的距離公式,求得點(diǎn)的坐標(biāo)和,在中,利用余弦定理,求得的關(guān)系式,再由離心率公式,計(jì)算即可求解.【詳解】由題意,雙曲線,可得,設(shè)在漸近線上,且點(diǎn)在第一象限內(nèi),由,解得,即點(diǎn),所以,在中,由余弦定理可得,可得,即,所以雙曲線離心率為.故選:C.【點(diǎn)睛】求解橢圓或雙曲線的離心率的三種方法:1、定義法:通過已知條件列出方程組,求得得值,根據(jù)離心率的定義求解離心率;2、齊次式法:由已知條件得出關(guān)于的二元齊次方程,然后轉(zhuǎn)化為關(guān)于的一元二次方程求解;3、特殊值法:通過取特殊值或特殊位置,求出離心率.10、B【解析】根據(jù)已知和漸近線方程可得,雙曲線焦距,結(jié)合的關(guān)系,即可求出結(jié)論.【詳解】因?yàn)殡p曲線的一條漸近線方程為,則①.又因?yàn)闄E圓與雙曲線有公共焦點(diǎn),雙曲線的焦距,即c=3,則a2+b2=c2=9②.由①②解得a=2,b=,則雙曲線C的方程為.故選:B.11、C【解析】根據(jù)已知條件求得,由此求得橢圓的方程.【詳解】依題意,所以橢圓方程為.故選:C12、B【解析】,再根據(jù)函數(shù)的奇偶性和單調(diào)性可得或,解之即可得解.【詳解】解:,由題意可得或即或,解得或故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】以,方向?yàn)檩S,垂直于,方向?yàn)檩S建立空間直角坐標(biāo)系,根據(jù)條件求得坐標(biāo),由二次函數(shù)求最值即可求得最小值.【詳解】以,方向?yàn)檩S,垂直于,方向?yàn)檩S建立空間直角坐標(biāo)系,則,由可設(shè),由是單位空間向量可得,由可設(shè),,當(dāng),的最小值是2,所以,取,,,當(dāng)時(shí),最小值為.故答案為:.14、①.②.3【解析】由漸近線方程知,結(jié)合雙曲線參數(shù)關(guān)系及離心率的定義求雙曲線的離心率,由已知可得右焦點(diǎn)為,應(yīng)用點(diǎn)線距離公式求距離.【詳解】由題設(shè),,則,當(dāng)時(shí),,則雙曲線為,故右焦點(diǎn)為,所以右焦點(diǎn)到漸近線的距離為.故答案為:,3.15、2或6【解析】由解析式得到導(dǎo)函數(shù),結(jié)合是函數(shù)極值點(diǎn),即可求的值.【詳解】由,得,因?yàn)楹瘮?shù)在處有極值,所以,即,解得2或6.經(jīng)檢驗(yàn),2或6滿足題意.故答案為:2或6.16、##【解析】利用導(dǎo)數(shù)的幾何意義根據(jù)r的2次近似值的定義求解即可【詳解】由,得,取,,所以過點(diǎn)作曲線的切線的斜率為1,所以直線的方程為,其與軸交點(diǎn)的橫坐標(biāo)為1,即,因?yàn)椋赃^點(diǎn)作曲線的切線的斜率為4,所以直線的方程為,其與軸交點(diǎn)的橫坐標(biāo)為,即,故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析,;(2).【解析】(1)對(duì)遞推公式進(jìn)行變形,結(jié)合等差數(shù)列的定義進(jìn)行求解即可;(2)運(yùn)用裂項(xiàng)相消法進(jìn)行求解即可.【小問1詳解】因?yàn)?,且,所以即,所以?shù)列是公差為2的等差數(shù)列.又,所以即;【小問2詳解】由(1)得,所以.故.18、(1)當(dāng)時(shí),或;當(dāng)時(shí),;當(dāng)時(shí),或(2)【解析】(1)由題意得對(duì)的值進(jìn)行分類討論可得不等式的解集;(2)將條件轉(zhuǎn)化為,,再利用基本不等式求最值可得的取值范圍;【小問1詳解】,即,所以,所以,①當(dāng)時(shí)不等式的解為或,②當(dāng)時(shí)不等式的解為,③當(dāng)時(shí)不等式的解為或,綜上:原不等式的解集為當(dāng)時(shí)或,當(dāng)時(shí),當(dāng)時(shí)或【小問2詳解】不等式在上有解,即在上有解,所以在上有解,所以,因?yàn)椋?,?dāng)且僅當(dāng),即時(shí)取等號(hào),所以.19、(1);(2).【解析】(1)由,可得,再利用數(shù)量積運(yùn)算性質(zhì)即可得出;(2)以為一組基底,設(shè)與所成的角為,由求解.【小問1詳解】,,,,∴,;【小問2詳解】∵,,∴,∵,∴,∵=8,∴,設(shè)與所成的角為,則.20、(1)證明見解析(2)【解析】(1)取中點(diǎn)連接,連接,證得四邊形為平行四邊形,,再證面,即可得到證明結(jié)果;(2)建立空間坐標(biāo)系,求面和面的法向量,即可得到兩個(gè)面的二面角的余弦值,進(jìn)而得到二面角大小.【小問1詳解】如上圖,取中點(diǎn)連接,連接,均為線段中點(diǎn),且,又G是的中點(diǎn),且且四邊形為平行四邊形為等腰直角三角形,為斜邊中點(diǎn),面,面面又面.【小問2詳解】建立如圖坐標(biāo)系,設(shè)面的法向量為設(shè)面的法向量為兩個(gè)法向量的夾角余弦值為:,由圖知兩個(gè)面的二面角為鈍角,故夾角為.21、(1);(2).【解析】(1)將條件化為基本量并解出,進(jìn)而求得答案;(2)通過裂項(xiàng)法即可求出答案.【小問1詳解】由,.得:解得:故.【小問2詳解】當(dāng)時(shí),.所以時(shí),

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論