上海市交大附中2025屆高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測(cè)試模擬試題含解析_第1頁(yè)
上海市交大附中2025屆高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測(cè)試模擬試題含解析_第2頁(yè)
上海市交大附中2025屆高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測(cè)試模擬試題含解析_第3頁(yè)
上海市交大附中2025屆高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測(cè)試模擬試題含解析_第4頁(yè)
上海市交大附中2025屆高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測(cè)試模擬試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩14頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

上海市交大附中2025屆高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測(cè)試模擬試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.某公司門前有一排9個(gè)車位的停車場(chǎng),從左往右數(shù)第三個(gè),第七個(gè)車位分別停著A車和B車,同時(shí)進(jìn)來(lái)C,D兩車.在C,D不相鄰的情況下,C和D至少有一輛與A和B車相鄰的概率是()A. B.C. D.2.已知三棱柱的所有棱長(zhǎng)均為2,平面,則異面直線,所成角的余弦值為()A. B.C. D.3.向量,向量,若,則實(shí)數(shù)()A. B.1C. D.4.在等差數(shù)列中,若,則()A.5 B.6C.7 D.85.已知梯形中,,且,則的值為()A. B.C. D.6.已知,,,其中,,,則()A. B.C. D.7.如圖,過拋物線y2=2px(p>0)的焦點(diǎn)F的直線l交拋物線于點(diǎn)A,B,交其準(zhǔn)線于點(diǎn)C,若|BC|=2|BF|,且|AF|=3,則此拋物線的方程為()A.y2=9x B.y2=6xC.y2=3x D.y2=x8.已知命題“若,則”,命題“若,則”,則下列命題中為真命題的是()A. B.C. D.9.己知F為拋物線的焦點(diǎn),過F作兩條互相垂直的直線,,直線與C交于A、B兩點(diǎn),直線與C交于D、E兩點(diǎn),則的最小值為()A.24 B.22C.20 D.1610.函數(shù)單調(diào)減區(qū)間是()A. B.C.和 D.11.已知直線過點(diǎn)且與直線平行,則直線方程為()A. B.C. D.12.設(shè)為數(shù)列的前n項(xiàng)和,,且滿足,若,則()A.2 B.3C.4 D.5二、填空題:本題共4小題,每小題5分,共20分。13.已知存在正數(shù)使不等式成立,則的取值范圍_____14.已知雙曲線,的左、右焦點(diǎn)分別為、,且的焦點(diǎn)到漸近線的距離為1,直線與交于,兩點(diǎn),為弦的中點(diǎn),若為坐標(biāo)原點(diǎn))的斜率為,,則下列結(jié)論正確的是____________①;②的離心率為;③若,則的面積為2;④若的面積為,則為鈍角三角形15.已知拋物線的頂點(diǎn)為坐標(biāo)原點(diǎn),焦點(diǎn)坐標(biāo)是,則該拋物線的標(biāo)準(zhǔn)方程為___________16.某廠將從64名員工中用系統(tǒng)抽樣的方法抽取4名參加2011年職工勞技大賽,將這64名員工編號(hào)為1~64,若已知8號(hào)、24號(hào)、56號(hào)在樣本中,那么樣本中最后一個(gè)員工的號(hào)碼是__________三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過程或演算步驟。17.(12分)如圖,在四棱錐中,,,,,為中點(diǎn),且平面.(1)求點(diǎn)到平面的距離;(2)線段上是否存在一點(diǎn),使平面?如果不存在,請(qǐng)說(shuō)明理由;如果存在,求的值.18.(12分)如圖,一個(gè)湖的邊界是圓心為的圓,湖的一側(cè)有一條直線型公路,湖上有橋(是圓的直徑).規(guī)劃在公路上選兩個(gè)點(diǎn)、,并修建兩段直線型道路、.規(guī)劃要求,線段、上的所有點(diǎn)到點(diǎn)的距離均不小于圓的半徑.已知點(diǎn)到直線的距離分別為和(為垂足),測(cè)得,,(單位:百米).(1)若道路與橋垂直,求道路的長(zhǎng);(2)在規(guī)劃要求下,點(diǎn)能否選在處?并說(shuō)明理由.19.(12分)如圖,在四棱錐中,平面,四邊形是菱形,,,是的中點(diǎn)(1)求證:;(2)已知二面角的余弦值為,求與平面所成角的正弦值20.(12分)已知數(shù)列與滿足(1)若,且,求數(shù)列的通項(xiàng)公式;(2)設(shè)的第k項(xiàng)是數(shù)列的最小項(xiàng),即恒成立.求證:的第k項(xiàng)是數(shù)列的最小項(xiàng);(3)設(shè).若存在最大值M與最小值m,且,試求實(shí)數(shù)的取值范圍21.(12分)在數(shù)列中,,,數(shù)列滿足(1)求證:數(shù)列是等比數(shù)列,并求出數(shù)列的通項(xiàng)公式;(2)數(shù)列前項(xiàng)和為,且滿足,求的表達(dá)式;(3)令,對(duì)于大于的正整數(shù)、(其中),若、、三個(gè)數(shù)經(jīng)適當(dāng)排序后能構(gòu)成等差數(shù)列,求符合條件的數(shù)組.22.(10分)已知,兩地的距離是.根據(jù)交通法規(guī),,兩地之間的公路車速(單位:)應(yīng)滿足.假設(shè)油價(jià)是7元/,以的速度行駛時(shí),汽車的耗油率為,當(dāng)車速為時(shí),汽車每小時(shí)耗油,司機(jī)每小時(shí)的工資是91元.(1)求的值;(2)如果不考慮其他費(fèi)用,當(dāng)車速是多少時(shí),這次行車的總費(fèi)用最低?

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】先求出基本事件總數(shù),和至少有一輛與和車相鄰的對(duì)立事件是和都不與和車相鄰,由此能求出和至少有一輛與和車相鄰的概率【詳解】解:某公司門前有一排9個(gè)車位的停車場(chǎng),從左往右數(shù)第三個(gè),第七個(gè)車位分別停著車和車,同時(shí)進(jìn)來(lái),兩車,在,不相鄰的條件下,基本事件總數(shù),和至少有一輛與和車相鄰的對(duì)立事件是和都不與和車相鄰,和至少有一輛與和車相鄰的概率:故選:B2、A【解析】建立空間直角坐標(biāo)系,利用向量法求解【詳解】以為坐標(biāo)原點(diǎn),平面內(nèi)過點(diǎn)且垂直于的直線為軸,所在直線為軸,所在直線為軸建立空間直角坐標(biāo)系,如圖所示,則,,,,∴,,∴,∴異面直線,所成角的余弦值為.故選:A3、C【解析】由空間向量垂直的坐標(biāo)表示列方程即可求解.【詳解】因?yàn)橄蛄浚蛄?,若,則,解得:,故選:C.4、B【解析】由得出.【詳解】由可得,故選:B5、D【解析】根據(jù)共線定理、平面向量的加法和減法法則,即可求得,進(jìn)而求出的值,即可求出結(jié)果.【詳解】因?yàn)椋杂?,所?故選:D.6、C【解析】先令函數(shù),求導(dǎo)判斷函數(shù)的單調(diào)性,并作出函數(shù)的圖像,由函數(shù)的單調(diào)性判斷,再由對(duì)稱性可得.【詳解】由,則,同理,,令,則,當(dāng);當(dāng),∴在上單調(diào)遞減,單調(diào)遞增,所以,即可得,又,,由圖的對(duì)稱性可知,.故選:C7、C【解析】過點(diǎn)A,B分別作準(zhǔn)線的垂線,交準(zhǔn)線于點(diǎn)E,D,設(shè)|BF|=a,利用拋物線的定義和平行線的性質(zhì)、直角三角形求解【詳解】如圖,過點(diǎn)A,B分別作準(zhǔn)線的垂線,交準(zhǔn)線于點(diǎn)E,D,設(shè)|BF|=a,則由已知得|BC|=2a,由拋物線定義得|BD|=a,故∠BCD=30°,在直角三角形ACE中,因?yàn)閨AE|=|AF|=3,|AC|=3+3a,2|AE|=|AC|,所以3+3a=6,從而得a=1,|FC|=3a=3,所以p=|FG|=|FC|=,因此拋物線的方程為y2=3x,故選:C.8、D【解析】利用指數(shù)函數(shù)的單調(diào)性可判斷命題的真假,利用特殊值法可判斷命題的真假,結(jié)合復(fù)合命題的真假可判斷出各選項(xiàng)中命題的真假.【詳解】對(duì)于命題,由于函數(shù)為上的增函數(shù),當(dāng)時(shí),,命題為真命題;對(duì)于命題,若,取,,則,命題為假命題.所以,、、均為假命題,為真命題.故選:D.【點(diǎn)睛】本題考查簡(jiǎn)單命題和復(fù)合命題真假的判斷,考查推理能力,屬于基礎(chǔ)題.9、A【解析】由拋物線的性質(zhì):過焦點(diǎn)的弦長(zhǎng)公式計(jì)算可得.【詳解】設(shè)直線,的斜率分別為,由拋物線的性質(zhì)可得,,所以,又因?yàn)?,所以,所以,故選:A.10、B【解析】根據(jù)函數(shù)求導(dǎo),然后由求解.【詳解】因?yàn)楹瘮?shù),所以,由,解得,所以函數(shù)的單調(diào)遞減區(qū)間是,故選:B11、C【解析】由題意,直線的斜率為,利用點(diǎn)斜式即可得答案.【詳解】解:因?yàn)橹本€與直線平行,所以直線的斜率為,又直線過點(diǎn),所以直線的方程為,即,故選:C.12、B【解析】由已知條件可得數(shù)列為首項(xiàng)為2,公差為2的等差數(shù)列,然后根據(jù)結(jié)合等差數(shù)列的求和公式可求得答案【詳解】在等式中,令,可得,所以數(shù)列為首項(xiàng)為2,公差為2的等差數(shù)列,因?yàn)椋?,化?jiǎn)得,,解得或(舍去),故選:B二、填空題:本題共4小題,每小題5分,共20分。13、(1,1)【解析】存在性問題轉(zhuǎn)化為最大值,運(yùn)用均值不等式,求出的最大值,轉(zhuǎn)化成解對(duì)數(shù)不等式,進(jìn)而解出【詳解】解:∵,由于,則,∴,當(dāng)且僅當(dāng)時(shí),即:時(shí),∴有最大值,又存在正數(shù)使不等式成立,則,即,∴,即的取值范圍為:.故答案為:【點(diǎn)睛】本題考查均值不等式的應(yīng)用和對(duì)數(shù)不等式的解法,還涉及存在性問題,考查化簡(jiǎn)計(jì)算能力14、②④【解析】由已知可得,可求,,從而判斷①②,求出△的面積可判斷③,設(shè),,利用面積求出點(diǎn)的坐標(biāo),再求邊長(zhǎng),求出可判斷④【詳解】解:設(shè),,,,可得,,兩式相減可得,由題意可得,且,,,,,,故②正確;的焦點(diǎn)到漸近線的距離為1,設(shè)到漸近線的距離為,則,即,,故①錯(cuò)誤,,若,不妨設(shè)在右支上,,又,,則的面積為,故③不正確;設(shè),,,,將代入雙曲線,得,,根據(jù)雙曲線的對(duì)稱性,不妨取點(diǎn)的坐標(biāo)為,,,,,為鈍角,為鈍角三角形.故④正確故答案為:②④15、【解析】根據(jù)焦點(diǎn)坐標(biāo)即可得到拋物線的標(biāo)準(zhǔn)方程【詳解】因?yàn)閽佄锞€的頂點(diǎn)為坐標(biāo)原點(diǎn),焦點(diǎn)坐標(biāo)是,所以,解得,拋物線的標(biāo)準(zhǔn)方程為故答案為:16、40【解析】結(jié)合系統(tǒng)抽樣的抽樣方法來(lái)確定最后抽取的號(hào)碼.【詳解】因?yàn)榉侄伍g隔為,故最后一個(gè)員工的號(hào)碼為.故答案為:三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過程或演算步驟。17、(1)(2)線段上存在一點(diǎn),當(dāng)時(shí),平面.【解析】(1)設(shè)點(diǎn)到平面的距離為,則由,由體積法可得答案.(2)由(1)連接,可得則從而平面,過點(diǎn)作交于點(diǎn),連接,可證明平面平面,從而可得出答案.【小問1詳解】由,,為中點(diǎn),則由平面,平面,則又,且,則平面又,則平面,且都在平面內(nèi)所以所以,取的中點(diǎn),連接,則,所以,所以所以所以則設(shè)點(diǎn)到平面的距離為,則由即,即【小問2詳解】線段上是否存在一點(diǎn),使平面.由(1)連接,則四邊形為平行四邊形,則過點(diǎn)作交于,則為中點(diǎn),則為的中點(diǎn),即又平面,則平面過點(diǎn)作交于點(diǎn),連接,則,即又平面,所以平面又,所以平面平面又平面,所以平面所以線段上存在一點(diǎn),當(dāng)時(shí),平面.18、(1)15(百米)(2)點(diǎn)選在處不滿足規(guī)劃要求,理由見解析【解析】(1)建立適當(dāng)?shù)淖鴺?biāo)系,得圓及直線的方程,進(jìn)而得解.(2)不妨點(diǎn)選在處,求方程并求其與圓的交點(diǎn),在線段上取點(diǎn)不符合條件,得結(jié)論.【小問1詳解】如圖,過作,垂足為.以為坐標(biāo)原點(diǎn),直線為軸,建立平面直角坐標(biāo)系.因?yàn)闉閳A的直徑,,所以圓的方程為.因?yàn)?,,所以,故直線的方程為,則點(diǎn),的縱坐標(biāo)分別為3,從而,,直線的斜率為.因?yàn)?,所以直線的斜率為,直線的方程為.令,得,,所以.因此道路的長(zhǎng)為15(百米).【小問2詳解】若點(diǎn)選在處,連結(jié),可求出點(diǎn),又,所以線段.由解得或,故不妨取,得到在線段上的點(diǎn),因?yàn)椋跃€段上存在點(diǎn)到點(diǎn)的距離小于圓的半徑5.因此點(diǎn)選在處不滿足規(guī)劃要求.19、(1)證明見解析;(2).【解析】(1)由菱形及線面垂直的性質(zhì)可得、,再根據(jù)線面垂直的判定、性質(zhì)即可證結(jié)論.(2)構(gòu)建空間直角坐標(biāo)系,設(shè),結(jié)合已知確定相關(guān)點(diǎn)坐標(biāo),進(jìn)而求面、面的法向量,結(jié)合已知二面角的余弦值求出參數(shù)t,再根據(jù)空間向量夾角的坐標(biāo)表示求與平面所成角的正弦值【小問1詳解】由平面,平面,則,又是菱形,則,又,所以平面,平面所以E.【小問2詳解】分別以,,為,,軸正方向建立空間直角坐標(biāo)系,設(shè),則,由(1)知:平面的法向量為,令面的法向量為,則,令,可得,因?yàn)槎娼堑挠嘞抑禐?,則,可得,則,設(shè)與平面所成的角為,又,,所以.20、(1)(2)證明見解析.(3)【解析】(1)由已知關(guān)系得出是等差數(shù)列及公差,然后可得通項(xiàng)公式;(2)由已知關(guān)系式,利用累加法證明對(duì)任意的,恒成立,即可得(3)由累加法求得通項(xiàng)公式,然后確定的奇數(shù)項(xiàng)和偶數(shù)項(xiàng)的單調(diào)性,得出數(shù)列的最大項(xiàng)和最小項(xiàng),再利用已知范圍解得的范圍【小問1詳解】由已知,是等差數(shù)列,公差為6,所以;【小問2詳解】對(duì)任意的,恒成立,而恒成立,若,則,恒成立,同理若,也有恒成立,所以對(duì)任意的,恒成立,即是最小項(xiàng);【小問3詳解】時(shí),,所以,也適合此式所以,若,則,,,即,,若,由于,且是正負(fù)相間,因此無(wú)最大項(xiàng)也無(wú)最小項(xiàng)因此有,所以的奇數(shù)項(xiàng)數(shù)列是遞增數(shù)列,且,,的偶數(shù)項(xiàng)數(shù)列是遞減數(shù)列,且,,所以的最大值是,最小項(xiàng)是,,由,又,所以21、(1)證明見解析,;(2);(3).【解析】(1)由已知等式變形可得,利用等比數(shù)列的定義可證得結(jié)論成立,確定等比數(shù)列的首項(xiàng)和公比,可求得數(shù)列的通項(xiàng)公式;(2)求得,然后分、兩種情況討論,結(jié)合裂項(xiàng)相消法可得出的表達(dá)式;(3)求得,分、、三種情況討論,利用奇數(shù)與偶數(shù)的性質(zhì)以及整數(shù)的性質(zhì)可求得、的值,綜合可得出結(jié)論.【小問1詳解】解:由可得,,則,,以此類推可知,對(duì)任意的,,則,故數(shù)列為等比數(shù)列,且該數(shù)列的首項(xiàng)為,公比為,故,可得.【小問2詳解】解:由(1)知,所以,所以,當(dāng)n=1時(shí),,當(dāng)時(shí),.因?yàn)闈M足,所以.【小問3詳解】解:,、、這三項(xiàng)經(jīng)適當(dāng)排序后能

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論