版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
天津市薊州等部分區(qū)2025屆高二上數(shù)學(xué)期末經(jīng)典模擬試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫(xiě)在答題紙相應(yīng)的答題區(qū)內(nèi)。寫(xiě)在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知雙曲線:的左、右焦點(diǎn)分別為,,點(diǎn)在雙曲線上.若為鈍角三角形,則的取值范圍是A. B.C. D.2.已知空間向量,,且與互相垂直,則k的值是()A.1 B.C. D.3.已知雙曲線的離心率為5,則其標(biāo)準(zhǔn)方程為()A. B.C. D.4.橢圓的焦點(diǎn)為、,上頂點(diǎn)為,若,則()A B.C. D.5.直線,若的傾斜角為60°,則的斜率為()A. B.C. D.6.已知兩條平行直線:與:間的距離為3,則()A.25或-5 B.25C.5 D.21或-97.設(shè)雙曲線的方程為,過(guò)拋物線的焦點(diǎn)和點(diǎn)的直線為.若的一條漸近線與平行,另一條漸近線與垂直,則雙曲線的方程為()A. B.C. D.8.下列命題中的假命題是()A.,B.存在四邊相等的四邊形不是正方形C.“存在實(shí)數(shù),使”的否定是“不存在實(shí)數(shù),使”D.若且,則,至少有一個(gè)大于9.正四棱錐中,,則直線與平面所成角的正弦值為A. B.C. D.10.已知數(shù)列中,且滿足,則()A.2 B.﹣1C. D.11.已知橢圓的右焦點(diǎn)為,則正數(shù)的值是()A.3 B.4C.9 D.2112.設(shè)平面的法向量為,平面的法向量為,若,則的值為()A.-5 B.-3C.1 D.7二、填空題:本題共4小題,每小題5分,共20分。13.古希臘著名數(shù)學(xué)家阿波羅尼斯與歐幾里得、阿基米德齊名.他發(fā)現(xiàn):“平面內(nèi)到兩個(gè)定點(diǎn)A、B的距離之比為定值(且)的點(diǎn)的軌跡是圓”.后來(lái)人們將這個(gè)圓以他的名字命名,稱為阿波羅尼斯圓,簡(jiǎn)稱阿氏圓,在平面直角坐標(biāo)系中,,,點(diǎn)滿足,則點(diǎn)P的軌跡方程為_(kāi)_________.(答案寫(xiě)成標(biāo)準(zhǔn)方程),的最小值為_(kāi)__________.14.直線l過(guò)拋物線的焦點(diǎn)F,與拋物線交于A,B兩點(diǎn),與其準(zhǔn)線交于點(diǎn)C,若,則直線l的斜率為_(kāi)_____.15.已知雙曲線-=1(a>0,b>0)與拋物線y2=8x有一個(gè)共同的焦點(diǎn)F,兩曲線的一個(gè)交點(diǎn)為P,若|FP|=5,則點(diǎn)F到雙曲線的漸近線的距離為_(kāi)____.16.已知直線,圓,若直線與圓相交于兩點(diǎn),則的最小值為_(kāi)_____三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知圓.(1)若不過(guò)原點(diǎn)的直線與圓相切,且直線在兩坐標(biāo)軸上的截距相等,求直線的方程;(2)求與圓和直線都相切的最小圓的方程.18.(12分)已知圓臺(tái)的上下底面半徑分別為,母線長(zhǎng)為.求:(1)圓臺(tái)的高;(2)圓臺(tái)的體積注:圓臺(tái)體積公式:,其中,S分別為上下底面面積,h為圓臺(tái)的高19.(12分)已知?jiǎng)訄A過(guò)定點(diǎn),且與直線相切.(1)求動(dòng)圓圓心的軌跡的方程;(2)直線過(guò)點(diǎn)與曲線相交于兩點(diǎn),問(wèn):在軸上是否存在定點(diǎn),使?若存在,求點(diǎn)坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.20.(12分)一個(gè)盒中裝有編號(hào)分別為、、、的四個(gè)形狀大小完全相同的小球.(1)從盒中任取兩球,列出所有的基本事件,并求取出的球的編號(hào)之和大于的概率;(2)從盒中任取一球,記下該球的編號(hào),將球放回,再?gòu)暮兄腥稳∫磺?,記下該球的編?hào),列出所有的基本事件,并求的概率.21.(12分)如圖,在三棱錐中,,點(diǎn)P為線段MC上的點(diǎn)(1)若平面PAB,試確定點(diǎn)P的位置,并說(shuō)明理由;(2)若,,,求三棱錐的體積22.(10分)已知雙曲線的兩個(gè)焦點(diǎn)為的曲線C上.(1)求雙曲線C的方程;(2)記O為坐標(biāo)原點(diǎn),過(guò)點(diǎn)Q(0,2)的直線l與雙曲線C相交于不同的兩點(diǎn)E、F,若△OEF的面積為求直線l的方程
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】根據(jù)雙曲線的幾何性質(zhì),結(jié)合余弦定理分別討論當(dāng)為鈍角時(shí)的取值范圍,根據(jù)雙曲線的對(duì)稱性,可以只考慮點(diǎn)在雙曲線上第一象限部分即可.【詳解】由題:雙曲線:的左、右焦點(diǎn)分別為,,點(diǎn)在雙曲線上,必有,若為鈍角三角形,根據(jù)雙曲線的對(duì)稱性不妨考慮點(diǎn)在雙曲線第一象限部分:當(dāng)為鈍角時(shí),在中,設(shè),有,,即,,所以;當(dāng)時(shí),所在直線方程,所以,,,根據(jù)圖象可得要使,點(diǎn)向右上方移動(dòng),此時(shí),綜上所述:的取值范圍是.故選:C【點(diǎn)睛】此題考查雙曲線中焦點(diǎn)三角形相關(guān)計(jì)算,關(guān)鍵在于根據(jù)幾何意義結(jié)合特殊情況分類討論,體現(xiàn)數(shù)形結(jié)合思想.2、D【解析】由=0可求解【詳解】由題意,故選:D3、D【解析】雙曲線離心率公式和a、b、c的關(guān)系即可求得m,從而得到雙曲線的標(biāo)準(zhǔn)方程.【詳解】∵雙曲線,∴,又,∴,∵離心率為,∴,解得,∴雙曲線方程.故選:D.4、C【解析】分析出為等邊三角形,可得出,進(jìn)而可得出關(guān)于的等式,即可解得的值.【詳解】在橢圓中,,,,如下圖所示:因?yàn)闄E圓的上頂點(diǎn)為點(diǎn),焦點(diǎn)為、,所以,,為等邊三角形,則,即,因此,.故選:C.5、D【解析】直線,斜率乘積為,斜線斜率等于傾斜角的正切值.【詳解】,,所以.故選:D.6、A【解析】根據(jù)平行直線的性質(zhì),結(jié)合平行線間距離公式進(jìn)行求解即可.【詳解】因?yàn)橹本€:與:平行,所以有,因?yàn)閮蓷l平行直線:與:間距離為3,所以,或,當(dāng)時(shí),;當(dāng)時(shí),,故選:A7、D【解析】由拋物線的焦點(diǎn)可求得直線的方程為,即得直線的斜率為,再根據(jù)雙曲線的漸近線的方程為,可得,即可求出,得到雙曲線的方程【詳解】由題可知,拋物線焦點(diǎn)為,所以直線的方程為,即直線的斜率為,又雙曲線的漸近線的方程為,所以,,因?yàn)?,解得故選:【點(diǎn)睛】本題主要考查拋物線的簡(jiǎn)單幾何性質(zhì),雙曲線的幾何性質(zhì),以及直線與直線的位置關(guān)系的應(yīng)用,屬于基礎(chǔ)題8、C【解析】利用簡(jiǎn)易邏輯的知識(shí)逐一判斷即可.【詳解】,故A正確;菱形的四邊相等,但不一定是正方形,故B正確;“存在實(shí)數(shù),使”的否定是“對(duì)任意的實(shí)數(shù)都有”,故C錯(cuò)誤;假設(shè)且,則,與矛盾,故D正確;故選:C9、C【解析】建立合適的空間直角坐標(biāo)系,求出和平面的法向量,直線與平面所成角的正弦值即為與的夾角的余弦值的絕對(duì)值,利用夾角公式求出即可.【詳解】建立如圖所示的空間直角坐標(biāo)系.有圖知,由題得、、、.,,.設(shè)平面的一個(gè)法向量,則,,令,得,,.設(shè)直線與平面所成的角為,則.故選:C.【點(diǎn)睛】本題考查線面角的求解,利用向量法可簡(jiǎn)化分析過(guò)程,直接用計(jì)算的方式解決問(wèn)題,是基礎(chǔ)題.10、C【解析】首先根據(jù)數(shù)列的遞推公式求出數(shù)列的前幾項(xiàng),即可得到數(shù)列的周期性,即可得解;【詳解】解:因?yàn)榍遥?,,,所以是周期為的周期?shù)列,所以,故選:C11、A【解析】由直接可得.【詳解】由題知,所以,因?yàn)椋?故選:A12、C【解析】根據(jù),可知向量建立方程求解即可.【詳解】由題意根據(jù),可知向量,則有,解得.故選:C二、填空題:本題共4小題,每小題5分,共20分。13、①.②.【解析】設(shè)點(diǎn)P坐標(biāo),然后用直接法可求;根據(jù)軌跡方程和數(shù)量積的坐標(biāo)表示對(duì)化簡(jiǎn),結(jié)合軌跡方程可得x的范圍,然后可解.【詳解】設(shè)P點(diǎn)坐標(biāo)為,則由,得,化簡(jiǎn)得,即.因?yàn)椋砸驗(yàn)辄c(diǎn)P在圓上,故所以,故的最小值為.故答案為:,14、【解析】由拋物線方程求出焦點(diǎn)坐標(biāo)與準(zhǔn)線方程,設(shè)直線為,、,即可得到的坐標(biāo),再聯(lián)立直線與拋物線方程,消元列出韋達(dá)定理,表示出、的坐標(biāo),根據(jù)得到方程,求出,即可得解;【詳解】解:拋物線方程為,則焦點(diǎn),準(zhǔn)線為,設(shè)直線為,、,則,由,消去得,所以,,則,,因?yàn)?,所以,所以,所以,解得,所以,即直線為,所以直線的斜率為;故答案為:15、【解析】設(shè)點(diǎn)為,由拋物線定義知,,求出點(diǎn)P坐標(biāo)代入雙曲線方程得到的關(guān)系式,求出雙曲線的漸近線方程,利用點(diǎn)到直線的距離公式求解即可.【詳解】由題意得F(2,0),因?yàn)辄c(diǎn)P在拋物線y2=8x上,|FP|=5,設(shè)點(diǎn)為,由拋物線定義知,,解得,不妨取P(3,2),代入雙曲線-=1,得-=1,又因?yàn)閍2+b2=4,解得a=1,b=,因?yàn)殡p曲線的漸近線方程為,所以雙曲線的漸近線為y=±x,由點(diǎn)到直線的距離公式可得,點(diǎn)F到雙曲線的漸近線的距離.故答案為:【點(diǎn)睛】本題考查雙曲線和拋物線方程及其幾何性質(zhì);考查運(yùn)算求解能力和知識(shí)遷移能力;靈活運(yùn)用雙曲線和拋物線的性質(zhì)是求解本題的關(guān)鍵;屬于中檔題、常考題型.16、【解析】求出直線過(guò)的定點(diǎn),當(dāng)圓心和定點(diǎn)的連線垂直于直線時(shí),取得最小值,結(jié)合即可求解.【詳解】由題意知,圓,圓心,半徑,直線,,,解得,故直線過(guò)定點(diǎn),設(shè)圓心到直線的距離為,則,可知當(dāng)距離最大時(shí),有最小值,由圖可知,時(shí),最大,此時(shí),此時(shí).故的最小值為.故答案為:.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)或;(2).【解析】(1)根據(jù)題意設(shè)出直線的方程,然后根據(jù)直線與圓相切,即可求出答案;(2)首先根據(jù)題意判斷出最小圓的圓心在直線上,且最小圓的半徑為,然后設(shè)出最小圓的圓心為,則圓心到直線的距離為,從而可求出答案.【小問(wèn)1詳解】因?yàn)橹本€不過(guò)原點(diǎn),設(shè)直線的方程為,圓的標(biāo)準(zhǔn)方程為,若直線與圓相切,則,即,解得或者3,所以直線的方程為或者;【小問(wèn)2詳解】因?yàn)?,所以直線與圓相離,所以所求最小圓的圓心一定在圓的圓心到直線的垂線段上,即最小圓的圓心在直線上,且最小圓的半徑為,設(shè)最小圓的圓心為,則圓心到直線的距離為,所以,即,解得(舍)或,所以最小的圓的方程為.18、(1);(2).【解析】(1)作出圓臺(tái)的直觀圖,過(guò)點(diǎn)A作,垂足為H,由勾股定理可求圓臺(tái)的高;(2)結(jié)合(1),利用圓臺(tái)的體積公式可求圓臺(tái)的體積【詳解】(1)作出圓臺(tái)的直觀圖,如圖,設(shè)圓臺(tái)上下底面圓心分別為,為圓臺(tái)的一條母線,連接,,過(guò)點(diǎn)A作,垂足為H,則的長(zhǎng)等于圓臺(tái)的高,因?yàn)閳A臺(tái)的上下底面半徑分別為,母線長(zhǎng)為所以,,則,可得,故圓臺(tái)高為;(2)圓的面積圓的面積為故圓臺(tái)的體積為19、(1);(2)存在,.【解析】(1)利用兩點(diǎn)間的距離公式和直線與圓相切的性質(zhì)即可得出;(2)假設(shè)存在點(diǎn),滿足題設(shè)條件,設(shè)直線的方程,根據(jù)韋達(dá)定理即可求出點(diǎn)的坐標(biāo)【小問(wèn)1詳解】設(shè)動(dòng)圓的圓心,依題意:化簡(jiǎn)得:,即為動(dòng)圓的圓心的軌跡的方程【小問(wèn)2詳解】假設(shè)存在點(diǎn),滿足條件,使①,顯然直線斜率不為0,所以由直線過(guò)點(diǎn),可設(shè),由得設(shè),,,,則,由①式得,,即消去,,得,即,,,存在點(diǎn)使得20、(1)基本事件答案見(jiàn)解析,概率為;(2)基本事件答案見(jiàn)解析,概率為.【解析】(1)利用列舉法列舉出所有的基本事件,并確定事件“取出的球的編號(hào)之和大于”所包含的基本事件數(shù),利用古典概型的概率公式可求得結(jié)果;(2)利用列舉法列舉出所有的基本事件,并確定事件“”所包含的基本事件數(shù),利用古典概型的概率公式可求得結(jié)果.【詳解】(1)記“從盒中任取兩球,取出球的編號(hào)之和大于”為事件,樣本點(diǎn)表示“從盒中取出、號(hào)球”,且和表示相同的樣本點(diǎn)(以此類推),則樣本空間為,則,根據(jù)古典概型可知,從盒中任取兩球,取出球的編號(hào)之和大于的概率為;(2)記“”為事件,樣本點(diǎn)表示第一次取出號(hào)球,將球放回,從盒中取出號(hào)球(以此類推),則樣本空間,則,所以,故事件“”的概率為.21、(1)點(diǎn)P為MC中點(diǎn),理由見(jiàn)解析(2)【解析】(1)根據(jù)平面PAB,得到線線垂直,再得到點(diǎn)P的位置;(2)根據(jù)平面PAB,將問(wèn)題轉(zhuǎn)化為計(jì)算即可.【小問(wèn)1詳解】∵平面PAB,平面ABP,∴又∵在中,,∴P為MC中點(diǎn).∴若平面PAB,則點(diǎn)P為MC中點(diǎn)【小問(wèn)2詳解】當(dāng)P為中點(diǎn)時(shí),在中,,,∴,同理可得∴在中,,∵由(1)知平面PAB,∴∴三棱錐的體積為22、(1)雙曲線方程為(2)滿足條件的直線l有兩條,其方程分別為y=和【
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年度水利工程水車租賃及水利工程咨詢服務(wù)合同3篇
- 智能小車畢課課程設(shè)計(jì)
- 托班自然語(yǔ)言課程設(shè)計(jì)
- 杠桿課程設(shè)計(jì)說(shuō)明書(shū)
- 普通梯形鋼屋架課程設(shè)計(jì)
- 2024年監(jiān)控安裝工程勞務(wù)合作模板協(xié)議版B版
- 2024年度智能收銀系統(tǒng)解決方案采購(gòu)合同3篇
- 本科多媒體技術(shù)課程設(shè)計(jì)
- 小學(xué)輪滑剪輯課程設(shè)計(jì)
- 2024年度三方倉(cāng)儲(chǔ)配送及安全責(zé)任合同范本2篇
- 兒童流感診療及預(yù)防指南(2024醫(yī)生版)
- 科幻小說(shuō)賞析與創(chuàng)意寫(xiě)作智慧樹(shù)知到期末考試答案2024年
- 沖上云霄-飛機(jī)鑒賞智慧樹(shù)知到期末考試答案2024年
- 崗位標(biāo)準(zhǔn)之鐵路工務(wù)線路工崗位作業(yè)標(biāo)準(zhǔn)
- 一人一檔檔案模板
- 給稅務(wù)局的情況說(shuō)明
- 臨時(shí)豎井旋噴樁首件施工總結(jié)
- 65歲老年人體檢報(bào)告單(共1頁(yè))
- 成骨細(xì)胞骨形成機(jī)制
- 年處理5000噸芒果工廠設(shè)計(jì)
- 關(guān)于大學(xué)生生活習(xí)慣對(duì)身體健康狀況影響的調(diào)查報(bào)告
評(píng)論
0/150
提交評(píng)論