2025屆湖南省邵東縣三中數(shù)學高二上期末教學質量檢測試題含解析_第1頁
2025屆湖南省邵東縣三中數(shù)學高二上期末教學質量檢測試題含解析_第2頁
2025屆湖南省邵東縣三中數(shù)學高二上期末教學質量檢測試題含解析_第3頁
2025屆湖南省邵東縣三中數(shù)學高二上期末教學質量檢測試題含解析_第4頁
2025屆湖南省邵東縣三中數(shù)學高二上期末教學質量檢測試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆湖南省邵東縣三中數(shù)學高二上期末教學質量檢測試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.函數(shù)的圖象如圖所示,則下列大小關系正確的是()A.B.C.D.2.即空氣質量指數(shù),越小,表明空氣質量越好,當不大于100時稱空氣質量為“優(yōu)良”.如圖是某市3月1日到12日的統(tǒng)計數(shù)據(jù).則下列敘述正確的是A.這天的的中位數(shù)是B.天中超過天空氣質量為“優(yōu)良”C.從3月4日到9日,空氣質量越來越好D.這天的的平均值為3.“趙爽弦圖”是我國古代數(shù)學的瑰寶,如圖所示,它是由四個全等的直角三角形和一個正方形構成.現(xiàn)用4種不同的顏色(4種顏色全部使用)給這5個區(qū)域涂色,要求相鄰的區(qū)域不能涂同一種顏色,每個區(qū)域只涂一種顏色,則不同的涂色方案有()A.24種 B.48種C.72種 D.96種4.已知函數(shù)有兩個不同的零點,則實數(shù)的取值范圍是()A B.C. D.5.若方程表示圓,則實數(shù)m的取值范圍為()A B.C. D.6.饕餮(tāotiè)紋,青銅器上常見的花紋之一,盛行于商代至西周早期,最早出現(xiàn)在距今五千年前長江下游地區(qū)的良渚文化玉器上.有人將饕餮紋的一部分畫到了方格紙上,如圖所示,每個小方格的邊長為,有一點從點出發(fā)每次向右或向下跳一個單位長度,且向右或向下跳是等可能性的,那么它經(jīng)過次跳動后恰好是沿著饕餮紋的路線到達點的概率為()A. B.C. D.7.已知橢圓的一個焦點坐標為,則的值為()A.1 B.3C.9 D.818.已知橢圓的上下頂點分別為,一束光線從橢圓左焦點射出,經(jīng)過反射后與橢圓交于點,則直線的斜率為()A. B.C. D.9.已知定義在上的函數(shù)的導函數(shù)為,且恒有,則下列不等式一定成立的是()A. B.C. D.10.已知橢圓的兩個焦點分別為,若橢圓上不存在點,使得是鈍角,則橢圓離心率的取值范圍是()A. B.C. D.11.均勻壓縮是物理學一種常見現(xiàn)象.在平面直角坐標系中曲線均勻壓縮,可用曲線上點的坐標來描述.設曲線上任意一點,若將曲線縱向均勻壓縮至原來的一半,則點的對應點為.同理,若將曲線橫向均勻壓縮至原來的一半,則曲線上點的對應點為.若將單位圓先橫向均勻壓縮至原來的一半,再縱向均勻壓縮至原來的,得到的曲線方程為()A. B.C. D.12.在空間直角坐標系中,已知點M是點在坐標平面內的射影,則的坐標是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖,用四種不同的顏色分別給A,B,C,D四個區(qū)域涂色,相鄰區(qū)域必須涂不同顏色,若允許同一種顏色多次使用,則不同的涂色方法的種數(shù)為______(用數(shù)字作答)14.已知曲線的方程是,給出下列四個結論:①曲線C恰好經(jīng)過4個整點(即橫、縱坐標均為整數(shù)的點);②曲線有4條對稱軸;③曲線上任意一點到原點的距離都不小于1;④曲線所圍成圖形的面積大于4;其中,所有正確結論的序號是_____15.在空間四邊形ABCD中,AD=2,BC=2,E,F(xiàn)分別是AB,CD的中點,EF=,則異面直線AD與BC所成角的大小為____.16.記為等差數(shù)列{}的前n項和,若,,則=_________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知拋物線C:焦點F的橫坐標等于橢圓的離心率.(1)求拋物線C的方程;(2)過(1,0)作直線l交拋物線C于A,B兩點,判斷原點與以線段AB為直徑的圓的位置關系,并說明理由.18.(12分)已知函數(shù).其中e為然對數(shù)的底數(shù)(1)若,求函數(shù)的單調區(qū)間;(2)若,討論函數(shù)零點個數(shù)19.(12分)已知橢圓的左、右焦點分別為、,離心率,且過點(1)求橢圓C的方程;(2)已知過的直線l交橢圓C于A、B兩點,試探究在平面內是否存在定點Q,使得是一個確定的常數(shù)?若存在,求出點Q的坐標;若不存在,說明理由20.(12分)已知拋物線上一點到其焦點F的距離為2.(1)求拋物線方程;(2)直線與拋物線相交于兩點,求的長.21.(12分)已知橢圓F:經(jīng)過點且離心率為,直線和是分別過橢圓F的左、右焦點的兩條動直線,它們與橢圓分別相交于點A、B和C、D,O為坐標原點,直線AB和直線CD相交于M.記直線的斜率分別為,且(1)求橢圓F的標準方程(2)是否存在定點P,Q,使得為定值.若存在,請求出P、Q的坐標,若不存在,請說明理由22.(10分)平面直角坐標系中,過橢圓:右焦點的直線交M于A,B兩點,P為AB的中點,且OP的斜率為.(1)求橢圓M的方程;(2)C,D為橢圓M上的兩點,若四邊形ACBD的對角線CD與AB垂直,求四邊形ACBD面積的最大值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】根據(jù)導數(shù)的幾何意義可得答案.【詳解】因為函數(shù)在某點處的導數(shù)值表示的是此點處切線的斜率,所以由圖可得,故選:C2、C【解析】這12天的AQI指數(shù)值的中位數(shù)是,故A不正確;這12天中,空氣質量為“優(yōu)良”的有95,85,77,67,72,92共6天,故B不正確;;從4日到9日,空氣質量越來越好,,故C正確;這12天的指數(shù)值的平均值為110,故D不正確.故選C3、B【解析】根據(jù)題意,分2步進行分析區(qū)域①、②、⑤和區(qū)域③、④的涂色方法,由分步計數(shù)原理計算可得答案.【詳解】根據(jù)題意,分2步進行分析:當區(qū)域①、②、⑤這三個區(qū)域兩兩相鄰,有種涂色的方法;當區(qū)域③、④,必須有1個區(qū)域選第4種顏色,有2種選法,選好后,剩下的區(qū)域有1種選法,則區(qū)域③、④有2種涂色方法,故共有種涂色的方法.故選:B4、A【解析】分離參數(shù),求函數(shù)的導數(shù),根據(jù)函數(shù)有兩個零點可知函數(shù)的單調性,即可求解.【詳解】由題意得有兩個零點令,則且所以,在上為增函數(shù),可得,當,在上單調遞減,可得,即要有兩個零點有兩個零點,實數(shù)的取值范圍是.故選:A【點睛】方法點睛:已知函數(shù)有零點求參數(shù)取值范圍常用的方法和思路(1)直接法:直接根據(jù)題設條件構建關于參數(shù)的不等式,再通過解不等式確定參數(shù)范圍;(2)分離參數(shù)法:先將參數(shù)分離,轉化成求函數(shù)值域問題加以解決;(3)數(shù)形結合法:先對解析式變形,在同一平面直角坐標系中,畫出函數(shù)的圖象,然后數(shù)形結合求解5、D【解析】根據(jù),解不等式即可求解.【詳解】由方程表示圓,則,解得.所以實數(shù)m的取值范圍為.故選:D6、B【解析】本題首先可根據(jù)題意列出次跳動的所有基本事件,然后找出沿著饕餮紋的路線到達點的事件,最后根據(jù)古典概型的概率計算公式即可得出結果.【詳解】點從點出發(fā),每次向右或向下跳一個單位長度,次跳動的所有基本事件有:(右,右,右)、(右,右,下)、(右,下,右)、(下,右,右)、(右,下,下)、(下,右,下)、(下,下,右)、(下,下,下),沿著饕餮紋的路線到達點的事件有:(下,下,右),故到達點的概率,故選:B.7、A【解析】根據(jù)條件,利用橢圓標準方程中長半軸長a,短半軸長b,半焦距c關系列式計算即得.【詳解】由橢圓的一個焦點坐標為,則半焦距c=2,于是得,解得,所以值為1.故選:A8、B【解析】根據(jù)給定條件借助橢圓的光學性質求出直線AD的方程,進而求出點D的坐標計算作答.【詳解】依題意,橢圓的上頂點,下頂點,左焦點,右焦點,由橢圓的光學性質知,反射光線AD必過右焦點,于是得直線AD的方程為:,由得點,則有,所以直線的斜率為.故選:B9、D【解析】構造函數(shù),用導數(shù)判斷函數(shù)單調性,即可求解.【詳解】根據(jù)題意,令,其中,則,∵,∴,∴在上為單調遞減函數(shù),∴,即,,則錯誤;,即,則錯誤;,即,則錯誤;,即,則正確;故選:.10、C【解析】點P取端軸的一個端點時,使得∠F1PF2是最大角.已知橢圓上不存在點P,使得∠F1PF2是鈍角,可得b≥c,利用離心率計算公式即可得出【詳解】∵點P取端軸的一個端點時,使得∠F1PF2是最大角已知橢圓上不存在點P,使得∠F1PF2是鈍角,∴b≥c,可得a2﹣c2≥c2,可得:a∴故選C【點睛】本題考查了橢圓的標準方程及其性質,考查了推理能力與計算能力,屬于中檔題.求橢圓的離心率(或離心率的取值范圍),常見有兩種方法:①求出,代入公式;②只需要根據(jù)一個條件得到關于的齊次式,結合轉化為的齊次式,然后等式(不等式)兩邊分別除以或轉化為關于的方程(不等式),解方程(不等式)即可得(的取值范圍).11、C【解析】設單位圓上一點為,經(jīng)過題設變換后坐標為,則,代入圓的方程即可得曲線方程.【詳解】由題設,單位圓上一點坐標為,經(jīng)過橫向均勻壓縮至原來的一半,縱向均勻壓縮至原來的,得到對應坐標為,∴,則,故中,可得:.故選:C.12、C【解析】點在平面內的射影是坐標不變,坐標為0的點.【詳解】點在坐標平面內的射影為,故點M的坐標是故選:C二、填空題:本題共4小題,每小題5分,共20分。13、48【解析】由已知按區(qū)域分四步,然后給,,,區(qū)域分步選擇顏色,由此即可求解【詳解】解:由已知按區(qū)域分四步:第一步區(qū)域有4種選擇,第二步區(qū)域有3種選擇,第三步區(qū)域有2種選擇,第四步區(qū)域也有2種選擇,則由分步計數(shù)原理可得共有種,故答案為:4814、②③④【解析】根據(jù)曲線方程作出曲線,即可根據(jù)題意判斷各結論的真假【詳解】曲線的簡圖如下:根據(jù)圖象以及方程可知,曲線C恰好經(jīng)過9個整點,它們是,,,所以①不正確;由圖可知,曲線有4條對稱軸,它們分別是軸,軸,直線和,②正確;由圖可知,曲線上任意一點到原點的距離都不小于1,③正確;由圖可知,曲線所圍成圖形的面積等于,④正確故答案為:②③④15、【解析】由已知找到異面直線所成角的平面角,再運用余弦定理可得答案.【詳解】解:設BD的中點為O,連接EO,F(xiàn)O,所以,則∠EOF(或其補角)就是異面直線AD,BC所成的角的平面角,又因為EO=AD=1,F(xiàn)O=BC=,EF=.根據(jù)余弦定理得=-,所以∠EOF=150°,異面直線AD與BC所成角的大小為30°.故答案為:30°.16、18【解析】根據(jù)等差數(shù)列通項和前n項和公式即可得到結果.【詳解】設等差數(shù)列的公差為,由,得,解得,所以故答案為:18三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)原點在以線段AB為直徑的圓上,詳見解析.【解析】(1)利用橢圓方程可得其離心率,進而可求拋物線的焦點,即求;(2)設直線l的方程為,聯(lián)立拋物線方程,利用韋達定理法可得,即得.【小問1詳解】由橢圓,可得,故,∴拋物線C的方程為.【小問2詳解】由題可設直線l的方程為,由,得,設,則,又,故,∴,∴,即,故原點在以線段AB為直徑的圓上.18、(1)單調遞減區(qū)間為,單調遞增區(qū)間為和;(2)當時,無零點;當時,有1個零點;當時,有2個零點.【解析】(1)求導,令導數(shù)大于零求增區(qū)間,令導數(shù)小于零求減區(qū)間;(2)求導數(shù),分、、a>2討論函數(shù)f(x)單調性和零點即可.【小問1詳解】當時,,易知定義域為R,,當時,;當或時,故的單調遞減區(qū)間為,單調遞增區(qū)間為和;【小問2詳解】當時,x正0負0正單增極大值單減極小值單增當時,恒成立,∴;當時,①當時,,∴無零點;②當時,,∴有1個零點;③當時,,又當時,單調遞增,,∴有2個零點;綜上所述:當時,無零點;當時,有1個零點;當時,有2個零點【點睛】結論點睛:(1)考查導數(shù)的幾何意義,往往與解析幾何、微積分相聯(lián)系.(2)利用導數(shù)求函數(shù)的單調區(qū)間,判斷單調性;已知單調性,求參數(shù).(3)利用導數(shù)求函數(shù)的最值(極值),解決生活中的優(yōu)化問題.(4)考查數(shù)形結合思想的應用19、(1)(2)存在,定點【解析】(1)根據(jù)已知條件求得,由此求得橢圓的方程.(2)對直線的斜率是否存在進行分類討論,設出直線的方程并與橢圓方程聯(lián)立,結合是常數(shù)列方程,從而求得定點的坐標.小問1詳解】,,由題可得:.【小問2詳解】當直線AB的斜率存在時,設直線AB的方程為,設,,聯(lián)立方程組,整理得,可得,所以則恒成立,則,解得,,,此時,即存在定點滿足條件當直線AB的斜率不存在時,直線AB的方程為x=-2,可得,,設要使得是一個常數(shù),即,顯然,也使得成立;綜上所述:存在定點滿足條件.20、(1)(2)【解析】(1)根據(jù)拋物線焦半徑公式即可得解;(2)聯(lián)立方程組求出交點坐標,即可得到弦長.【小問1詳解】由題:拋物線上一點到其焦點F的距離為2,即,所以拋物線方程:【小問2詳解】聯(lián)立直線和得,解得,,21、(1);(2)存在點

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論