2024屆內(nèi)蒙古自治區(qū)包頭市三十三中高三下學(xué)期3月初態(tài)考試數(shù)學(xué)試題_第1頁
2024屆內(nèi)蒙古自治區(qū)包頭市三十三中高三下學(xué)期3月初態(tài)考試數(shù)學(xué)試題_第2頁
2024屆內(nèi)蒙古自治區(qū)包頭市三十三中高三下學(xué)期3月初態(tài)考試數(shù)學(xué)試題_第3頁
2024屆內(nèi)蒙古自治區(qū)包頭市三十三中高三下學(xué)期3月初態(tài)考試數(shù)學(xué)試題_第4頁
2024屆內(nèi)蒙古自治區(qū)包頭市三十三中高三下學(xué)期3月初態(tài)考試數(shù)學(xué)試題_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2024屆內(nèi)蒙古自治區(qū)包頭市三十三中高三下學(xué)期3月初態(tài)考試數(shù)學(xué)試題考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知數(shù)列滿足:)若正整數(shù)使得成立,則()A.16 B.17 C.18 D.192.設(shè)是虛數(shù)單位,若復(fù)數(shù),則()A. B. C. D.3.已知命題:“關(guān)于的方程有實(shí)根”,若為真命題的充分不必要條件為,則實(shí)數(shù)的取值范圍是()A. B. C. D.4.若的展開式中的系數(shù)為150,則()A.20 B.15 C.10 D.255.函數(shù)()的圖象的大致形狀是()A. B. C. D.6.已知函數(shù)的圖像與一條平行于軸的直線有兩個(gè)交點(diǎn),其橫坐標(biāo)分別為,則()A. B. C. D.7.已知等差數(shù)列{an},則“a2>a1”是“數(shù)列{an}為單調(diào)遞增數(shù)列”的()A.充分而不必要條件B.必要而不充分條件C.充分必要條件D.既不充分也不必要條件8.設(shè)函數(shù)是奇函數(shù)的導(dǎo)函數(shù),當(dāng)時(shí),,則使得成立的的取值范圍是()A. B.C. D.9.已知關(guān)于的方程在區(qū)間上有兩個(gè)根,,且,則實(shí)數(shù)的取值范圍是()A. B. C. D.10.已知的展開式中第項(xiàng)與第項(xiàng)的二項(xiàng)式系數(shù)相等,則奇數(shù)項(xiàng)的二項(xiàng)式系數(shù)和為().A. B. C. D.11.已知盒中有3個(gè)紅球,3個(gè)黃球,3個(gè)白球,且每種顏色的三個(gè)球均按,,編號(hào),現(xiàn)從中摸出3個(gè)球(除顏色與編號(hào)外球沒有區(qū)別),則恰好不同時(shí)包含字母,,的概率為()A. B. C. D.12.1777年,法國(guó)科學(xué)家蒲豐在宴請(qǐng)客人時(shí),在地上鋪了一張白紙,上面畫著一條條等距離的平行線,而他給每個(gè)客人發(fā)許多等質(zhì)量的,長(zhǎng)度等于相鄰兩平行線距離的一半的針,讓他們隨意投放.事后,蒲豐對(duì)針落地的位置進(jìn)行統(tǒng)計(jì),發(fā)現(xiàn)共投針2212枚,與直線相交的有704枚.根據(jù)這次統(tǒng)計(jì)數(shù)據(jù),若客人隨意向這張白紙上投放一根這樣的針,則針落地后與直線相交的概率約為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.三棱柱中,,側(cè)棱底面,且三棱柱的側(cè)面積為.若該三棱柱的頂點(diǎn)都在同一個(gè)球的表面上,則球的表面積的最小值為_____.14.若,則_________.15.已知復(fù)數(shù),其中為虛數(shù)單位,則的模為_______________.16.如圖,在三棱錐A﹣BCD中,點(diǎn)E在BD上,EA=EB=EC=ED,BDCD,△ACD為正三角形,點(diǎn)M,N分別在AE,CD上運(yùn)動(dòng)(不含端點(diǎn)),且AM=CN,則當(dāng)四面體C﹣EMN的體積取得最大值時(shí),三棱錐A﹣BCD的外接球的表面積為_____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)圖1是由矩形ADEB,Rt△ABC和菱形BFGC組成的一個(gè)平面圖形,其中AB=1,BE=BF=2,∠FBC=60°,將其沿AB,BC折起使得BE與BF重合,連結(jié)DG,如圖2.(1)證明:圖2中的A,C,G,D四點(diǎn)共面,且平面ABC⊥平面BCGE;(2)求圖2中的二面角B?CG?A的大小.18.(12分)隨著時(shí)代的發(fā)展,A城市的競(jìng)爭(zhēng)力、影響力日益卓著,這座創(chuàng)新引領(lǐng)型城市有望踏上向“全球城市”發(fā)起“沖擊”的新征程.A城市的活力與包容無不吸引著無數(shù)懷揣夢(mèng)想的年輕人前來發(fā)展,目前A城市的常住人口大約為1300萬.近日,某報(bào)社記者作了有關(guān)“你來A城市發(fā)展的理由”的調(diào)查問卷,參與調(diào)查的對(duì)象年齡層次在25~44歲之間.收集到的相關(guān)數(shù)據(jù)如下:來A城市發(fā)展的理由人數(shù)合計(jì)自然環(huán)境1.森林城市,空氣清新2003002.降水充足,氣候怡人100人文環(huán)境3.城市服務(wù)到位1507004.創(chuàng)業(yè)氛圍好3005.開放且包容250合計(jì)10001000(1)根據(jù)以上數(shù)據(jù),預(yù)測(cè)400萬25~44歲年齡的人中,選擇“創(chuàng)業(yè)氛圍好”來A城市發(fā)展的有多少人;(2)從所抽取選擇“自然環(huán)境”作為來A城市發(fā)展的理由的300人中,利用分層抽樣的方法抽取6人,從這6人中再選取3人發(fā)放紀(jì)念品.求選出的3人中至少有2人選擇“森林城市,空氣清新”的概率;(3)在選擇“自然環(huán)境”作為來A城市發(fā)展的理由的300人中有100名男性;在選擇“人文環(huán)境”作為來A城市發(fā)展的理由的700人中有400名男性;請(qǐng)?zhí)顚懴旅媪新?lián)表,并判斷是否有的把握認(rèn)為性別與“自然環(huán)境”或“人文環(huán)境”的選擇有關(guān)?自然環(huán)境人文環(huán)境合計(jì)男女合計(jì)附:,.P()0.0500.0100.001k3.8416.63510.82819.(12分)已知均為正實(shí)數(shù),函數(shù)的最小值為.證明:(1);(2).20.(12分)已知函數(shù).(1)若,求證:.(2)討論函數(shù)的極值;(3)是否存在實(shí)數(shù),使得不等式在上恒成立?若存在,求出的最小值;若不存在,請(qǐng)說明理由.21.(12分)為調(diào)研高中生的作文水平.在某市普通高中的某次聯(lián)考中,參考的文科生與理科生人數(shù)之比為,且成績(jī)分布在的范圍內(nèi),規(guī)定分?jǐn)?shù)在50以上(含50)的作文被評(píng)為“優(yōu)秀作文”,按文理科用分層抽樣的方法抽取400人的成績(jī)作為樣本,得到成績(jī)的頻率分布直方圖,如圖所示.其中構(gòu)成以2為公比的等比數(shù)列.(1)求的值;(2)填寫下面列聯(lián)表,能否在犯錯(cuò)誤的概率不超過0.01的情況下認(rèn)為“獲得優(yōu)秀作文”與“學(xué)生的文理科”有關(guān)?文科生理科生合計(jì)獲獎(jiǎng)6不獲獎(jiǎng)合計(jì)400(3)將上述調(diào)查所得的頻率視為概率,現(xiàn)從全市參考學(xué)生中,任意抽取2名學(xué)生,記“獲得優(yōu)秀作文”的學(xué)生人數(shù)為,求的分布列及數(shù)學(xué)期望.附:,其中.0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.82822.(10分)在平面直角坐標(biāo)系xoy中,以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系。已知曲線C的極坐標(biāo)方程為,過點(diǎn)的直線l的參數(shù)方程為(為參數(shù)),直線l與曲線C交于M、N兩點(diǎn)。(1)寫出直線l的普通方程和曲線C的直角坐標(biāo)方程:(2)若成等比數(shù)列,求a的值。

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】

計(jì)算,故,解得答案.【詳解】當(dāng)時(shí),,即,且.故,,故.故選:.【點(diǎn)睛】本題考查了數(shù)列的相關(guān)計(jì)算,意在考查學(xué)生的計(jì)算能力和對(duì)于數(shù)列公式方法的綜合應(yīng)用.2、A【解析】

結(jié)合復(fù)數(shù)的除法運(yùn)算和模長(zhǎng)公式求解即可【詳解】∵復(fù)數(shù),∴,,則,故選:A.【點(diǎn)睛】本題考查復(fù)數(shù)的除法、模長(zhǎng)、平方運(yùn)算,屬于基礎(chǔ)題3、B【解析】命題p:,為,又為真命題的充分不必要條件為,故4、C【解析】

通過二項(xiàng)式展開式的通項(xiàng)分析得到,即得解.【詳解】由已知得,故當(dāng)時(shí),,于是有,則.故選:C【點(diǎn)睛】本題主要考查二項(xiàng)式展開式的通項(xiàng)和系數(shù)問題,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平.5、C【解析】

對(duì)x分類討論,去掉絕對(duì)值,即可作出圖象.【詳解】故選C.【點(diǎn)睛】識(shí)圖常用的方法(1)定性分析法:通過對(duì)問題進(jìn)行定性的分析,從而得出圖象的上升(或下降)的趨勢(shì),利用這一特征分析解決問題;(2)定量計(jì)算法:通過定量的計(jì)算來分析解決問題;(3)函數(shù)模型法:由所提供的圖象特征,聯(lián)想相關(guān)函數(shù)模型,利用這一函數(shù)模型來分析解決問題.6、A【解析】

畫出函數(shù)的圖像,函數(shù)對(duì)稱軸方程為,由圖可得與關(guān)于對(duì)稱,即得解.【詳解】函數(shù)的圖像如圖,對(duì)稱軸方程為,,又,由圖可得與關(guān)于對(duì)稱,故選:A【點(diǎn)睛】本題考查了正弦型函數(shù)的對(duì)稱性,考查了學(xué)生綜合分析,數(shù)形結(jié)合,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.7、C【解析】試題分析:根據(jù)充分條件和必要條件的定義進(jìn)行判斷即可.解:在等差數(shù)列{an}中,若a2>a1,則d>0,即數(shù)列{an}為單調(diào)遞增數(shù)列,若數(shù)列{an}為單調(diào)遞增數(shù)列,則a2>a1,成立,即“a2>a1”是“數(shù)列{an}為單調(diào)遞增數(shù)列”充分必要條件,故選C.考點(diǎn):必要條件、充分條件與充要條件的判斷.8、D【解析】構(gòu)造函數(shù),令,則,由可得,則是區(qū)間上的單調(diào)遞減函數(shù),且,當(dāng)x∈(0,1)時(shí),g(x)>0,∵lnx<0,f(x)<0,(x2-1)f(x)>0;當(dāng)x∈(1,+∞)時(shí),g(x)<0,∵lnx>0,∴f(x)<0,(x2-1)f(x)<0∵f(x)是奇函數(shù),當(dāng)x∈(-1,0)時(shí),f(x)>0,(x2-1)f(x)<0∴當(dāng)x∈(-∞,-1)時(shí),f(x)>0,(x2-1)f(x)>0.綜上所述,使得(x2-1)f(x)>0成立的x的取值范圍是.本題選擇D選項(xiàng).點(diǎn)睛:函數(shù)的單調(diào)性是函數(shù)的重要性質(zhì)之一,它的應(yīng)用貫穿于整個(gè)高中數(shù)學(xué)的教學(xué)之中.某些數(shù)學(xué)問題從表面上看似乎與函數(shù)的單調(diào)性無關(guān),但如果我們能挖掘其內(nèi)在聯(lián)系,抓住其本質(zhì),那么運(yùn)用函數(shù)的單調(diào)性解題,能起到化難為易、化繁為簡(jiǎn)的作用.因此對(duì)函數(shù)的單調(diào)性進(jìn)行全面、準(zhǔn)確的認(rèn)識(shí),并掌握好使用的技巧和方法,這是非常必要的.根據(jù)題目的特點(diǎn),構(gòu)造一個(gè)適當(dāng)?shù)暮瘮?shù),利用它的單調(diào)性進(jìn)行解題,是一種常用技巧.許多問題,如果運(yùn)用這種思想去解決,往往能獲得簡(jiǎn)潔明快的思路,有著非凡的功效.9、C【解析】

先利用三角恒等變換將題中的方程化簡(jiǎn),構(gòu)造新的函數(shù),將方程的解的問題轉(zhuǎn)化為函數(shù)圖象的交點(diǎn)問題,畫出函數(shù)圖象,再結(jié)合,解得的取值范圍.【詳解】由題化簡(jiǎn)得,,作出的圖象,又由易知.故選:C.【點(diǎn)睛】本題考查了三角恒等變換,方程的根的問題,利用數(shù)形結(jié)合法,求得范圍.屬于中檔題.10、D【解析】因?yàn)榈恼归_式中第4項(xiàng)與第8項(xiàng)的二項(xiàng)式系數(shù)相等,所以,解得,所以二項(xiàng)式中奇數(shù)項(xiàng)的二項(xiàng)式系數(shù)和為.考點(diǎn):二項(xiàng)式系數(shù),二項(xiàng)式系數(shù)和.11、B【解析】

首先求出基本事件總數(shù),則事件“恰好不同時(shí)包含字母,,”的對(duì)立事件為“取出的3個(gè)球的編號(hào)恰好為字母,,”,記事件“恰好不同時(shí)包含字母,,”為,利用對(duì)立事件的概率公式計(jì)算可得;【詳解】解:從9個(gè)球中摸出3個(gè)球,則基本事件總數(shù)為(個(gè)),則事件“恰好不同時(shí)包含字母,,”的對(duì)立事件為“取出的3個(gè)球的編號(hào)恰好為字母,,”記事件“恰好不同時(shí)包含字母,,”為,則.故選:B【點(diǎn)睛】本題考查了古典概型及其概率計(jì)算公式,考查了排列組合的知識(shí),解答的關(guān)鍵在于正確理解題意,屬于基礎(chǔ)題.12、D【解析】

根據(jù)統(tǒng)計(jì)數(shù)據(jù),求出頻率,用以估計(jì)概率.【詳解】.故選:D.【點(diǎn)睛】本題以數(shù)學(xué)文化為背景,考查利用頻率估計(jì)概率,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

分析題意可知,三棱柱為正三棱柱,所以三棱柱的中心即為外接球的球心,設(shè)棱柱的底面邊長(zhǎng)為,高為,則三棱柱的側(cè)面積為,球的半徑表示為,再由重要不等式即可得球表面積的最小值【詳解】如下圖,∵三棱柱為正三棱柱∴設(shè),∴三棱柱的側(cè)面積為∴又外接球半徑∴外接球表面積.故答案為:【點(diǎn)睛】考查學(xué)生對(duì)幾何體的正確認(rèn)識(shí),能通過題意了解到題目傳達(dá)的意思,培養(yǎng)學(xué)生空間想象力,能夠利用題目條件,畫出圖形,尋找外接球的球心以及半徑,屬于中檔題14、【解析】

因?yàn)?,所?因?yàn)?,所以,又,所以,所?.15、【解析】

利用復(fù)數(shù)模的計(jì)算公式求解即可.【詳解】解:由,得,所以.故答案為:.【點(diǎn)睛】本題考查復(fù)數(shù)模的求法,屬于基礎(chǔ)題.16、32π【解析】

設(shè)ED=a,根據(jù)勾股定理的逆定理可以通過計(jì)算可以證明出CE⊥ED.AM=x,根據(jù)三棱錐的體積公式,運(yùn)用基本不等式,可以求出AM的長(zhǎng)度,最后根據(jù)球的表面積公式進(jìn)行求解即可.【詳解】設(shè)ED=a,則CDa.可得CE2+DE2=CD2,∴CE⊥ED.當(dāng)平面ABD⊥平面BCD時(shí),當(dāng)四面體C﹣EMN的體積才有可能取得最大值,設(shè)AM=x.則四面體C﹣EMN的體積(a﹣x)a×xax(a﹣x),當(dāng)且僅當(dāng)x時(shí)取等號(hào).解得a=2.此時(shí)三棱錐A﹣BCD的外接球的表面積=4πa2=32π.故答案為:32π【點(diǎn)睛】本題考查了基本不等式的應(yīng)用,考查了球的表面積公式,考查了數(shù)學(xué)運(yùn)算能力和空間想象能力.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見詳解;(2).【解析】

(1)因?yàn)檎奂埡驼澈喜桓淖兙匦?,和菱形?nèi)部的夾角,所以,依然成立,又因和粘在一起,所以得證.因?yàn)槭瞧矫娲咕€,所以易證.(2)在圖中找到對(duì)應(yīng)的平面角,再求此平面角即可.于是考慮關(guān)于的垂線,發(fā)現(xiàn)此垂足與的連線也垂直于.按照此思路即證.【詳解】(1)證:,,又因?yàn)楹驼吃谝黄?,A,C,G,D四點(diǎn)共面.又.平面BCGE,平面ABC,平面ABC平面BCGE,得證.(2)過B作延長(zhǎng)線于H,連結(jié)AH,因?yàn)锳B平面BCGE,所以而又,故平面,所以.又因?yàn)樗允嵌娼堑钠矫娼?,而在中,又因?yàn)楣剩?而在中,,即二面角的度數(shù)為.【點(diǎn)睛】很新穎的立體幾何考題.首先是多面體粘合問題,考查考生在粘合過程中哪些量是不變的.再者粘合后的多面體不是直棱柱,建系的向量解法在本題中略顯麻煩,突出考查幾何方法.最后將求二面角轉(zhuǎn)化為求二面角的平面角問題考查考生的空間想象能力.18、(1)(萬)(2)(3)填表見解析;有的把握認(rèn)為性別與“自然環(huán)境”或“人文環(huán)境”的選擇有關(guān)【解析】

(1)在1000個(gè)樣本中選擇“創(chuàng)業(yè)氛圍好”來A城市發(fā)展的有300個(gè),根據(jù)頻率公式即可求得結(jié)果.(2)由分層抽樣的知識(shí)可得,抽取6人中,4人選擇“森林城市,空氣清新”,2人選擇“降水充足,氣候怡人”求出對(duì)應(yīng)的基本事件數(shù),即可求得結(jié)果.(3)計(jì)算的值,對(duì)照臨界值表可得答案.【詳解】(1)(萬)(2)從所抽取選擇“自然環(huán)境”作為來A城市發(fā)展理由的300人中,利用分層抽樣的方法抽取6人,其中4人是選擇“森林城市,空氣清新”,2人是選擇“降水充足,氣候怡人”.記事件A為選出的3人中至少有2人選擇“森林城市,空氣清新”,則,.(3)列聯(lián)表如下自然環(huán)境人文環(huán)境合計(jì)男100400500女200300500合計(jì)3007001000,所以有的把握認(rèn)為性別與“自然環(huán)境”或“人文環(huán)境”的選擇有關(guān).【點(diǎn)睛】本題主要考查獨(dú)立性檢測(cè)的相關(guān)知識(shí)、分層抽樣與古典概念計(jì)算概率、考查學(xué)生的綜合分析與計(jì)算能力,難度較易.19、(1)證明見解析(2)證明見解析【解析】

(1)運(yùn)用絕對(duì)值不等式的性質(zhì),注意等號(hào)成立的條件,即可求得最小值,再運(yùn)用柯西不等式,即可得到最小值.(2)利用基本不等式即可得到結(jié)論,注意等號(hào)成立的條件.【詳解】(1)由題意,則函數(shù),又函數(shù)的最小值為,即,由柯西不等式得,當(dāng)且僅當(dāng)時(shí)取“=”.故.(2)由題意,利用基本不等式可得,,,(以上三式當(dāng)且僅當(dāng)時(shí)同時(shí)取“=”)由(1)知,,所以,將以上三式相加得即.【點(diǎn)睛】本題主要考查絕對(duì)值不等式、柯西不等式等基礎(chǔ)知識(shí),考查運(yùn)算能力,屬于中檔題.20、(1)證明見解析;(2)見解析;(3)存在,1.【解析】

(1),求出單調(diào)區(qū)間,進(jìn)而求出,即可證明結(jié)論;(2)對(duì)(或)是否恒成立分類討論,若恒成立,沒有極值點(diǎn),若不恒成立,求出的解,即可求出結(jié)論;(3)令,可證恒成立,而,由(2)得,在為減函數(shù),在上單調(diào)遞減,在都存在,不滿足,當(dāng)時(shí),設(shè),且,只需求出在單調(diào)遞增時(shí)的取值范圍即可.【詳解】(1),,,當(dāng)時(shí),,當(dāng)時(shí),,∴,故.(2)由題知,,,①當(dāng)時(shí),,所以在上單調(diào)遞減,沒有極值;②當(dāng)時(shí),,得,當(dāng)時(shí),;當(dāng)時(shí),,所以在上單調(diào)遞減,在上單調(diào)遞增.故在處取得極小值,無極大值.(3)不妨令,設(shè)在恒成立,在單調(diào)遞增,,在恒成立,所以,當(dāng)時(shí),,由(2)知,當(dāng)時(shí),在上單調(diào)遞減,恒成立;所以不等式在上恒成立,只能.當(dāng)時(shí),,由(1)知在上單調(diào)遞減,所以,不滿足題意.當(dāng)時(shí),設(shè),因?yàn)?,所以,,即,所以在上單調(diào)遞增,又,所以時(shí),恒成立,即恒成立,故存在,使得不等式在上恒成立,此時(shí)的最小值是1.【點(diǎn)睛】本題考查導(dǎo)數(shù)綜合應(yīng)用,涉及到函數(shù)的單調(diào)性、極值最值、不等式證明,考查分類討論思想,意在考查直觀想象、邏輯推理、數(shù)學(xué)計(jì)算能力,屬于較難題.21、(1),,.(2)填表見解析;在犯錯(cuò)誤的概率不超過0.01的情況下,不能認(rèn)為“獲得優(yōu)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論