版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2025屆寧夏青銅峽市吳忠中學(xué)分校高二上數(shù)學(xué)期末質(zhì)量檢測模擬試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知橢圓(a>b>0)的離心率為,則=()A. B.C. D.2.已知雙曲線滿足,且與橢圓有公共焦點(diǎn),則雙曲線的方程為()A. B.C. D.3.如圖,在直三棱柱中,D為棱的中點(diǎn),,,,則異面直線CD與所成角的余弦值為()A. B.C. D.4.已知是函數(shù)的導(dǎo)函數(shù),則()A0 B.2C.4 D.65.我們知道∶用平行于圓錐母線的平面(不過頂點(diǎn))截圓錐,則平面與圓錐側(cè)面的交線是拋物線一部分,如圖,在底面半徑和高均為2的圓錐中,AB、CD是底面圓O的兩條互相垂直的直徑,E是母線PB的中點(diǎn),已知過CD與E的平面與圓錐側(cè)面的交線是以E為頂點(diǎn)的圓錐曲線的一部分,則該圓錐曲線的焦點(diǎn)到其準(zhǔn)線的距離等于()A. B.C. D.16.已知橢圓的長軸長是短軸長的倍,左焦點(diǎn)、右頂點(diǎn)和下頂點(diǎn)分別為,坐標(biāo)原點(diǎn)到直線的距離為,則的面積為()A. B.4C. D.7.中共一大會(huì)址、江西井岡山、貴州遵義、陜西延安是中學(xué)生的幾個(gè)重要的研學(xué)旅行地.某中學(xué)在校學(xué)生人,學(xué)校團(tuán)委為了了解本校學(xué)生到上述紅色基地研學(xué)旅行的情況,隨機(jī)調(diào)查了名學(xué)生,其中到過中共一大會(huì)址或井岡山研學(xué)旅行的共有人,到過井岡山研學(xué)旅行的人,到過中共一大會(huì)址并且到過井岡山研學(xué)旅行的恰有人,根據(jù)這項(xiàng)調(diào)查,估計(jì)該學(xué)校到過中共一大會(huì)址研學(xué)旅行的學(xué)生大約有()人A. B.C. D.8.已知實(shí)數(shù),滿足則的最大值為()A.-1 B.0C.1 D.29.設(shè)變量滿足約束條件:,則的最小值()A. B.C. D.10.若正三棱柱的所有棱長都相等,D是的中點(diǎn),則直線AD與平面所成角的正弦值為A. B.C. D.11.下列直線中,傾斜角最大的為()A. B.C. D.12.若數(shù)列對任意滿足,下面選項(xiàng)中關(guān)于數(shù)列的說法正確的是()A.一定是等差數(shù)列B.一定是等比數(shù)列C.可以既是等差數(shù)列又是等比數(shù)列D.可以既不是等差數(shù)列又不是等比數(shù)列二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)過點(diǎn)K(-1,0)的直線l與拋物線C:y2=4x交于A、B兩點(diǎn),為拋物線的焦點(diǎn),若|BF|=2|AF|,則cos∠AFB=_______14.已知定點(diǎn),,P是橢圓上的動(dòng)點(diǎn),則的的最小值為______.15.已知雙曲線M的中心在原點(diǎn),以坐標(biāo)軸為對稱軸.從以下三個(gè)條件中任選兩個(gè)條件,并根據(jù)所選條件求雙曲線M的標(biāo)準(zhǔn)方程.①一個(gè)焦點(diǎn)坐標(biāo)為;②經(jīng)過點(diǎn);③離心率為.你選擇的兩個(gè)條件是___________,得到的雙曲線M的標(biāo)準(zhǔn)方程是___________.16.已知P,A,B,C四點(diǎn)共面,對空間任意一點(diǎn)O,若,則______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知拋物線上的點(diǎn)M(5,m)到焦點(diǎn)F的距離為6.(1)求拋物線C的方程;(2)過點(diǎn)作直線l交拋物線C于A,B兩點(diǎn),且點(diǎn)P是線段AB的中點(diǎn),求直線l方程.18.(12分)已知數(shù)列的前n項(xiàng)和為,滿足,(1)求證:數(shù)列是等比數(shù)列,并求數(shù)列的通項(xiàng)公式;(2)設(shè),為數(shù)列的前n項(xiàng)和,①求;②若不等式對任意的正整數(shù)n恒成立,求實(shí)數(shù)的取值范圍19.(12分)如圖,在四棱錐中,底面是矩形,平面于點(diǎn)M連接.(1)求證:平面;(2)求平面與平面所成角的余弦值.20.(12分)橢圓C:的左右焦點(diǎn)分別為,,P為橢圓C上一點(diǎn).(1)當(dāng)P為橢圓C的上頂點(diǎn)時(shí),求的余弦值;(2)直線與橢圓C交于A,B,若,求k21.(12分)如圖是一個(gè)正三棱柱(以為底面)被一平面所截得到的幾何體,截面為ABC.已知,,M為AB中點(diǎn).(1)證明:平面;(2)求此幾何體的體積.22.(10分)已知拋物線:上的點(diǎn)到其準(zhǔn)線的距離為5.(1)求拋物線的方程;(2)已知為原點(diǎn),點(diǎn)在拋物線上,若的面積為6,求點(diǎn)的坐標(biāo).
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】由離心率得,再由轉(zhuǎn)化為【詳解】因?yàn)椋?a2=9b2,所以故選:D.2、A【解析】根據(jù)橢圓的標(biāo)準(zhǔn)方程求出,利用雙曲線,結(jié)合建立方程求出,,即可求出雙曲線的漸近線方程【詳解】橢圓的標(biāo)準(zhǔn)方程為,橢圓中的,雙曲線的焦點(diǎn)與橢圓的焦點(diǎn)相同,雙曲線中,雙曲線滿足,即又在雙曲線中,即,解得:,所以雙曲線的方程為,故選:A【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:本題主要考查雙曲線方程的求解,根據(jù)橢圓和雙曲線的關(guān)系建立方程求出,,是解決本題的關(guān)鍵,考查學(xué)生的計(jì)算能力,屬于基礎(chǔ)題3、A【解析】以C為坐標(biāo)原點(diǎn),分別以,,方向?yàn)閤,y,z軸的正方向,建立如圖所示的空間直角坐標(biāo)系.運(yùn)用異面直線的空間向量求解方法,可求得答案.【詳解】解:以C為坐標(biāo)原點(diǎn),分別以,,的方向?yàn)閤,y,z軸的正方向,建立如圖所示的空間直角坐標(biāo)系.由已知可得,,,,則,,所以.又因?yàn)楫惷嬷本€所成的角的范圍為,所以異面直線與所成角的余弦值為.故選:A.4、D【解析】由導(dǎo)數(shù)運(yùn)算法則求出導(dǎo)函數(shù),再計(jì)算導(dǎo)數(shù)值【詳解】由題意,,所以故選:D5、C【解析】由圓錐的底面半徑和高及E的位置可得,建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,可得C的坐標(biāo),設(shè)拋物線的方程,將C的坐標(biāo)代入求出拋物線的方程,進(jìn)而可得焦點(diǎn)到其準(zhǔn)線的距離【詳解】設(shè)AB,CD的交點(diǎn)為,連接PO,由題意可得PO⊥面AB,所以PO⊥OB,由題意OB=OP=OC=2,因?yàn)镋是母線PB的中點(diǎn),所以,由題意建立適當(dāng)?shù)淖鴺?biāo)系,以BP為y軸以O(shè)E為x軸,E為坐標(biāo)原點(diǎn),如圖所示∶可得∶,設(shè)拋物線的方程為y2=mx,將C點(diǎn)坐標(biāo)代入可得,所以,所以拋物線的方程為∶,所以焦點(diǎn)坐標(biāo)為,準(zhǔn)線方程為,所以焦點(diǎn)到其準(zhǔn)線的距離為故選:C6、C【解析】設(shè),根據(jù)題意,可知的方程為直線,根據(jù)原點(diǎn)到直線的距離建立方程,求出,進(jìn)而求出,的值,以及到直線的距離,再根據(jù)面積公式,即可求出結(jié)果.【詳解】設(shè),由題意可知,其中,所以的方程為,即所以原點(diǎn)到直線的距離為,所以,即,;所以直線的方程為,所以到直線的距離為;又,所以的面積為.故選:C.7、B【解析】作出韋恩圖,設(shè)調(diào)查的學(xué)生中去過中共一大會(huì)址研學(xué)旅行的學(xué)生人數(shù)為,根據(jù)題意求出的值,由此可得出該學(xué)校到過中共一大會(huì)址研學(xué)旅行的學(xué)生人數(shù).【詳解】如下圖所示,設(shè)調(diào)查的學(xué)生中去過中共一大會(huì)址研學(xué)旅行的學(xué)生人數(shù)為,由題意可得,解的,因此,該學(xué)校到過中共一大會(huì)址研學(xué)旅行的學(xué)生的人數(shù)為.故選:B.【點(diǎn)睛】本題考查韋恩圖的應(yīng)用,同時(shí)也考查了利用分層抽樣求樣本容量,考查計(jì)算能力,屬于基礎(chǔ)題.8、D【解析】由約束條件作出可行域,化目標(biāo)函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,把最優(yōu)解的坐標(biāo)代入目標(biāo)函數(shù),即可得到結(jié)果【詳解】由約束條件畫出可行域如圖,化目標(biāo)函數(shù)為,由圖可知當(dāng)直線過點(diǎn)時(shí),直線在軸上的截距最小,取得最大值2.故選:D9、D【解析】如圖作出可行域,知可行域的頂點(diǎn)是A(-2,2)、B()及C(-2,-2),平移,當(dāng)經(jīng)過A時(shí),的最小值為-8,故選D.10、A【解析】建立空間直角坐標(biāo)系,得到相關(guān)點(diǎn)的坐標(biāo)后求出直線的方向向量和平面的法向量,借助向量的運(yùn)算求出線面角的正弦值【詳解】取AC的中點(diǎn)為坐標(biāo)原點(diǎn),建立如圖所示的空間直角坐標(biāo)系設(shè)三棱柱的棱長為2,則,∴設(shè)為平面的一個(gè)法向量,由故令,得設(shè)直線AD與平面所成角為,則,所以直線AD與平面所成角的正弦值為故選A【點(diǎn)睛】空間向量的引入為解決立體幾何問題提供了較好的方法,解題時(shí)首先要建立適當(dāng)?shù)淖鴺?biāo)系,得到相關(guān)點(diǎn)的坐標(biāo)后借助向量的運(yùn)算,將空間圖形的位置關(guān)系或數(shù)量關(guān)系轉(zhuǎn)化為向量的運(yùn)算處理.在解決空間角的問題時(shí),首先求出向量夾角的余弦值,然后再轉(zhuǎn)化為所求的空間角.解題時(shí)要注意向量的夾角和空間角之間的聯(lián)系和區(qū)別,避免出現(xiàn)錯(cuò)誤11、D【解析】首先分別求直線的斜率,再結(jié)合直線傾斜角與斜率的關(guān)系,即可判斷選項(xiàng).【詳解】A.直線的斜率;B.直線的斜率;C.直線的斜率;D.直線的斜率,因?yàn)?,結(jié)合直線的斜率與傾斜角的關(guān)系,可知直線的傾斜角最大.故選:D12、D【解析】由已知可得或,結(jié)合等差數(shù)列和等比數(shù)列的定義,可得答案【詳解】由,得或,即或,若,則數(shù)列是等差數(shù)列,則B錯(cuò)誤;若,當(dāng)時(shí),數(shù)列是等差數(shù)列,當(dāng)時(shí),數(shù)列是等比數(shù)列,則A錯(cuò)誤數(shù)列是等差數(shù)列,也可以是等比數(shù)列;由,不能得到數(shù)列為非0常數(shù)列,則不可以既是等差又是等比數(shù)列,則C錯(cuò)誤;可以既不是等差又不是等比數(shù)列,如1,3,5,10,20,,故D正確;故選:D二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)已知設(shè)直線方程為與C聯(lián)立,結(jié)合|BF|=2|AF|,利用韋達(dá)定理計(jì)算可得點(diǎn)A,B的坐標(biāo),進(jìn)而求出向量的坐標(biāo),進(jìn)而利用求向量夾角余弦值的方法,即可得到答案.【詳解】令直線的方程為將直線方程代入批物線C:的方程,得令且,所以由拋物線的定義知,由|BF|=2|AF|可知,,則,解得:,,則A,B兩點(diǎn)坐標(biāo)分別為,則則.故答案為:14、##【解析】根據(jù)橢圓的定義可知,化簡并結(jié)合基本不等式可求的的最小值.【詳解】由題可知:點(diǎn),是橢圓的焦點(diǎn),所以,所以,即,當(dāng)且僅當(dāng)時(shí)等號成立,即時(shí)等號成立.所以的最小值為,故答案為:.15、①.①②或①③或②③②.或或【解析】選①②,根據(jù)焦點(diǎn)坐標(biāo)及頂點(diǎn)坐標(biāo)直接求解,選①③,根據(jù)焦點(diǎn)坐標(biāo)及離心率求出即可得解,選②③,可由頂點(diǎn)坐標(biāo)及離心率得出,即可求解.【詳解】選①②,由題意則,,,雙曲線的標(biāo)準(zhǔn)方程為,故答案為:①②;,選①③,由題意,,,,雙曲線的標(biāo)準(zhǔn)方程為,選②③,由題意知,,,雙曲線的標(biāo)準(zhǔn)方程為.故答案為:①②;或①③;或②③;.16、【解析】由條件可得存在實(shí)數(shù),使得,再用向量表示出向量,即可得出答案.詳解】P,A,B,C四點(diǎn)共面,則存在實(shí)數(shù),使得所以即所以,解得故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)由拋物線定義有求參數(shù),即可寫出拋物線方程.(2)由題意設(shè),聯(lián)立拋物線方程,結(jié)合韋達(dá)定理、中點(diǎn)坐標(biāo)求參數(shù)k,即可得直線l方程【小問1詳解】由題設(shè),拋物線準(zhǔn)線方程為,∴拋物線定義知:可得,故【小問2詳解】由題設(shè),直線l的斜率存在且不為0,設(shè)聯(lián)立方程,得,整理得,則.又P是線段AB的中點(diǎn),∴,即故l18、(1)證明見解析,(2)①;②【解析】(1)由得到,即可得到,從而得證,即可求出的通項(xiàng)公式,從而得到的通項(xiàng)公式;(2)①由(1)可得,再利用錯(cuò)位相減法求和即可;②利用作差法證明的單調(diào)性,即可得到,即可得到,再解一元二次不等式即可;【小問1詳解】證明:由,,當(dāng)時(shí),可得,解得,當(dāng)時(shí),,又,兩式相減得,所以,所以,即,則數(shù)列是首項(xiàng)為,公比為的等比數(shù)列;所以,所以【小問2詳解】解:①由(1)可得,所以,所以,所以,所以整理得②由①知,所以,即單調(diào)遞增,所以,因?yàn)椴坏仁綄θ我獾恼麛?shù)n恒成立,所以,即,解得或,即19、(1)證明見詳解(2)【解析】(1)連接,交于點(diǎn),則為中點(diǎn),再由等腰三角形三線合一可知為中點(diǎn),連接,利用中位線可知,根據(jù)直線與平面平行的判定定理即可證明;(2)根據(jù)題意建立空間直角坐標(biāo)系,求出兩個(gè)平面的法向量,利用向量法即可求出兩平面所成角的余弦值.【小問1詳解】連接,交于點(diǎn),則為中點(diǎn),因?yàn)?,于,則為中點(diǎn),連接,則,又因?yàn)槠矫?,平?所以平面;【小問2詳解】如圖所示,以點(diǎn)為坐標(biāo)原點(diǎn),建立空間直角坐標(biāo)系,則,,設(shè)平面的一個(gè)法向量為,由可得,令,得,即,易知平面的一個(gè)法向量為,設(shè)平面與平面所成角為,,則平面與平面所成角的余弦值為.20、(1)(2)【解析】(1)利用余弦定理可求頂角的余弦值.(2)聯(lián)立直線方程和橢圓方程,消元后利用韋達(dá)定理結(jié)合弦長公式可求的值.【小問1詳解】當(dāng)為橢圓的上頂點(diǎn)時(shí),,在中,由余弦定理知.【小問2詳解】設(shè),,將直線與橢圓:聯(lián)立得:,因?yàn)橹本€過焦點(diǎn),故恒成立,又,由弦長公式得,化簡整理得:,解得.21、(1)證明見解析(2)【解析】(1)取的中點(diǎn),連接,,可得四邊形為平行四邊形,從而可得,然后證明平面,從而可證明.(2)過作截面平面,分別交,于,,連接,作于,由所求幾何體體積為從而可得答案.【小問1詳解】如圖,取的中點(diǎn),連接,,因?yàn)?,分別是,的中點(diǎn).所以且又因?yàn)?,,所以且,故四邊形為平行四邊形,所?因
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《證券投資相關(guān)》課件
- 《湖泊的水文特征》課件
- 《語文下冊《雪》魯迅》課件
- 單位管理制度集粹選集人力資源管理
- 《行政職業(yè)能力測驗(yàn)》2024年公務(wù)員考試谷城縣全真模擬試卷含解析
- 《燭之武退秦師》教案15篇
- 《定額換算及實(shí)例》課件
- 2015年高考語文試卷(北京)(空白卷)
- 2007年北京高考語文真題及答案
- 2003年北京高考語文真題及答案
- 消毒供應(yīng)室護(hù)理質(zhì)量考核評分標(biāo)準(zhǔn)
- 《軟件工程》教案(本科)
- 粗粒土和巨粒土最大干密度記錄表及報(bào)告
- 愛麗絲夢游仙境話劇中英文劇本(共6頁)
- 書法少年宮活動(dòng)記錄
- 表冷器性能計(jì)算書
- 走遍德國 A1(課堂PPT)
- 照明公司個(gè)人工作總結(jié)范文
- 熱控專業(yè)施工質(zhì)量驗(yàn)收范圍劃分表
- 2022年sppb簡易體能狀況量表
- 各類傳染病個(gè)案調(diào)查表集
評論
0/150
提交評論