版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2025屆江蘇省江陰四校高一上數(shù)學期末綜合測試模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知平面向量,,且,則實數(shù)的值為()A. B.C. D.2.定義域在R上的函數(shù)是奇函數(shù)且,當時,,則的值為()A. B.C D.3.已知,,,則a、b、c的大小關(guān)系是()A. B.C. D.4.若xlog34=1,則4x+4–x=A.1 B.2C. D.5.將的圖象向右平移個單位,再把所得圖象上所有點的橫坐標伸長到原來的2倍得到的圖象,則A. B.C. D.6.已知,,,則下列判斷正確是()A. B.C. D.7.設(shè)集合,則()A. B.C. D.8.在四棱錐中,平面,中,,,則三棱錐的外接球的表面積為A. B.C. D.9.已知函數(shù),下列結(jié)論中錯誤的是()A.的圖像關(guān)于中心對稱B.在上單調(diào)遞減C.的圖像關(guān)于對稱D.的最大值為310.函數(shù),則下列坐標表示的點一定在函數(shù)圖像上的是A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知,,則____________12.若f(x)為偶函數(shù),且當x≤0時,,則不等式>的解集______.13.寫出一個同時具有下列三個性質(zhì)函數(shù):________.①;②在上單調(diào)遞增;③.14.已知α為第二象限角,且則的值為______.15.已知向量滿足,且,則與的夾角為_______16.已知,,則的最大值為______;若,,且,則______.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.整治人居環(huán)境,打造美麗鄉(xiāng)村,某村準備將一塊由一個半圓和長方形組成的空地進行美化,如圖,長方形的邊為半圓的直徑,O為半圓的圓心,,現(xiàn)要將此空地規(guī)劃出一個等腰三角形區(qū)域(底邊)種植觀賞樹木,其余的區(qū)域種植花卉.設(shè).(1)當時,求的長;(2)求三角形區(qū)域面積的最大值.18.已知集合,(1)當時,求;19.已知集合,其中,集合若,求;若,求實數(shù)的取值范圍20.如圖所示,在三棱柱ABC-A1B1C1中,E,F(xiàn),G,H分別是AB,AC,A1B1,A1C1的中點,求證:(1)B,C,H,G四點共面;(2)平面EFA1∥平面BCHG.21.已知定義在R上的函數(shù)滿足:①對任意實數(shù)x,y,都有;②對任意(1)求;(2)判斷并證明函數(shù)的奇偶性;(3)若,直接寫出的所有零點(不需要證明)
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】根據(jù)垂直向量坐標所滿足的條件計算即可【詳解】因為平面向量,,且,所以,解得故選:C2、A【解析】根據(jù)函數(shù)的奇偶性和周期性進行求解即可.【詳解】因為,所以函數(shù)的周期為,因為函數(shù)是奇函數(shù),當時,,所以,故選:A3、D【解析】借助中間量比較即可.詳解】解:根據(jù)題意,,,,所以故選:D4、D【解析】條件可化為x=log43,運用對數(shù)恒等式,即可【詳解】∵xlog34=1,∴x=log43,∴4x=3,∴4x+4–x=3+.故選D【點睛】本題考查對數(shù)性質(zhì)的簡單應(yīng)用,屬于基礎(chǔ)題目5、A【解析】由三角函數(shù)圖象的平移變換及伸縮變換可得:將的圖象所有點的橫坐標縮短到原來的倍,再把所得圖象向左平移個單位,即可得到的圖象,得解【詳解】解:將的圖象所有點的橫坐標縮短到原來的倍得到,再把所得圖象向左平移個單位,得到,故選A【點睛】本題主要考查了三角函數(shù)圖象的平移變換及伸縮變換,屬于簡單題6、C【解析】對數(shù)函數(shù)的單調(diào)性可比較、與的大小關(guān)系,由此可得出結(jié)論.【詳解】,即.故選:C.7、B【解析】根據(jù)交集定義運算即可【詳解】因為,所以,故選:B.【點睛】本題考查集合的運算,屬基礎(chǔ)題,在高考中要求不高,掌握集合的交并補的基本概念即可求解.8、B【解析】由題意,求長,即可求外接圓半徑,從而可求該三棱錐的外接球的半徑,即可求出三棱錐的外接球的表面積.【詳解】由題意中,,,則是等腰直角三角形,平面可得,,平面,,則的中點為球心設(shè)外接圓半徑為,則,設(shè)球心到平面的距離為,則,由勾股定理得,則三棱錐的外接球的表面積故選:【點睛】本題考查三棱錐外接球表面積的求法,利用球的對稱性確定球心到平面的距離,培養(yǎng)空間感知能力,中等題型.9、B【解析】根據(jù)三角函數(shù)的性質(zhì),依次整體代入檢驗即可得答案.【詳解】解:對于A選項,當時,,所以是的對稱中心,故A選項正確;對于B選項,當時,,此時函數(shù)在區(qū)間上不單調(diào),故B選項錯誤;對于C選項,當時,,所以的圖像關(guān)于對稱,故C選項正確;對于D選項,的最大值為,故D選項正確.故選:B10、D【解析】因為函數(shù),,所以,所以函數(shù)為偶函數(shù),則、均在在函數(shù)圖像上.故選D考點:函數(shù)的奇偶性二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】,,考點:三角恒等變換12、【解析】由已知條件分析在上的單調(diào)性,利用函數(shù)的奇偶性可得,再根據(jù)函數(shù)的單調(diào)性解不等式即可.【詳解】f(x)為偶函數(shù),且當x≤0時,單調(diào)遞增,當時,函數(shù)單調(diào)遞減,若>,f(x)為偶函數(shù),,,同時平方并化簡得,解得或,即不等式>的解集為.故答案為:【點睛】本題考查函數(shù)的奇偶性與單調(diào)性的綜合應(yīng)用,屬于中檔題.13、或其他【解析】找出一個同時具有三個性質(zhì)的函數(shù)即可.【詳解】例如,是單調(diào)遞增函數(shù),,滿足三個條件.故答案為:.(答案不唯一)14、【解析】根據(jù)已知求解得出,再利用誘導公式和商數(shù)關(guān)系化簡可求【詳解】由,得,得或.α為第二象限角,,.故答案:.15、##【解析】根據(jù)平面向量的夾角公式即可求出【詳解】設(shè)與的夾角為,由夾角余弦公式,解得故答案為:16、①.14②.10【解析】根據(jù)數(shù)量積的運算性質(zhì),計算的平方即可求出最大值,兩邊平方,可得,計算的平方即可求解.【詳解】,當且僅當同向時等號成立,所以,即的最大值為14,由兩邊平方可得:,所以,所以,即.故答案為:14;10【點睛】本題主要考查了數(shù)量積的運算性質(zhì),數(shù)量積的定義,考查了運算能力,屬于中檔題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)利用三角函數(shù)表達出的長;(2)用的三角函數(shù)表達出三角形區(qū)域面積,利用換元法轉(zhuǎn)化為二次函數(shù),求出三角形區(qū)域面積的最大值.【小問1詳解】設(shè)MN與AB相交于點E,則,則,故的長為【小問2詳解】過點P作PF⊥MN于點F,則PF=AE=,而MN=ME+EN=,則三角形區(qū)域面積為,設(shè),因為,所以,故,而,則,故當時,取得最大值,故三角形區(qū)域面積的最大值為18、(1)(2)【解析】(1)解一元二次不等式求得集合,由補集和并集的定義可運算求得結(jié)果;(2)分別在和兩種情況下,根據(jù)交集為空集可構(gòu)造不等式求得結(jié)果.【小問1詳解】由題意得,或,,.【小問2詳解】,當時,,符合題意,當時,由,得,故a的取值范圍為19、(1);【解析】解出二次不等式以及分式不等式得到集合和,根據(jù)并集的定義求并集;由集合是集合的子集,可得,根據(jù)包含關(guān)系列出不等式,求出的取值范圍.【詳解】集合,由,則,解得,即,,則,則,即,可得,解得,故m的取值范圍是【點睛】本題考查集合的交并運算,以及由集合的包含關(guān)系求參數(shù)問題,屬于基礎(chǔ)題.在解有關(guān)集合的題的過程中,要注意在求補集與交集時要考慮端點是否可以取到,這是一個易錯點,同時將不等式與集合融合,體現(xiàn)了知識點之間的交匯.20、(1)證明見解析;(2)證明見解析.【解析】(1)證明,再由,由平行公理證明,證得四點共面;(2)證明,證得面,再證得,證得面,從而證得平面EFA1∥平面BCHG.【詳解】(1)∵G,H分別是A1B1,A1C1的中點,∴GH是△A1B1C1的中位線,∴GH∥B1C1.又∵B1C1∥BC,∴GH∥BC,∴B,C,H,G四點共面(2)∵E,F(xiàn)分別是AB,AC的中點,∴EF∥BC.∵EF?平面BCHG,BC?平面BCHG,∴EF∥平面BCHG.∵A1GEB且,∴四邊形A1EBG是平行四邊形,∴A1E∥GB.∵A1E?平面BCHG,GB?平面BCHG,∴A1E∥平面BCHG.∵A1E∩EF=E,∴平面EFA1∥平面BCHG.【點睛】本題考查了四點共面的證明,面面平行的判定,考查對基本定理的掌握與應(yīng)用,空間想象能力,要注意線線平行、線面平行、面
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 旅游娛樂用地買賣合同2篇
- 安居房施工合同款項支付流程詳解3篇
- 房屋買賣合同詐騙案例解讀3篇
- 新版勞動實習生合同3篇
- 工業(yè)用氣體采購合同范本3篇
- 房屋買賣合同法律解答3篇
- 帆船教練勞動合同樣本3篇
- 擋水墻施工合同文本3篇
- 搖一搖服務(wù)合同的違約責任免除3篇
- 安徽上市公司勞動合同樣本3篇
- 2024年3月天津第一次高考英語試卷真題答案解析(精校打印)
- 2024譯林版七年級英語上冊單詞(帶音標)
- 品管圈PDCA案例-普外科提高甲狀腺手術(shù)患者功能鍛煉合格率
- 2024-2025學年語文二年級上冊 部編版期末測試卷(含答案)
- 2025年消防救援設(shè)施操作員職業(yè)技能資格知識考試題庫與答案
- GB/T 44351-2024退化林修復技術(shù)規(guī)程
- 220千伏線路工程內(nèi)懸浮抱桿分解組立鐵塔施工方案
- 2025年蛇年春聯(lián)帶橫批-蛇年對聯(lián)大全新春對聯(lián)集錦
- 中建3局-施工工藝質(zhì)量管理標準化指導手冊土建部分下冊
- 雙狐地質(zhì)成圖系統(tǒng)使用手冊
- 國家開放大學2021年計算機應(yīng)用基礎(chǔ)終結(jié)性考試試題附答案
評論
0/150
提交評論