版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆北京市海淀區(qū)高一數(shù)學第一學期期末考試模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.把表示成,的形式,則的值可以是()A. B.C. D.2.半徑為,圓心角為弧度的扇形的面積為()A. B.C. D.3.已知,,則下列不等式正確的是()A. B.C. D.4.已知函數(shù),將圖象向右平移個單位長度得到函數(shù)的圖象,若對任意,都有成立,則的值為A. B.1C. D.25.如圖,正方形中,為的中點,若,則的值為()A. B.C. D.6.已知函數(shù),則()A.﹣1 B.C. D.37.零點所在的區(qū)間是()A. B.C. D.8.將函數(shù)的圖像向左、向下各平移1個單位長度,得到的函數(shù)圖像,則()A. B.C. D.9.已知,求的值()A. B.C. D.10.若“”是假命題,則實數(shù)m的最小值為()A.1 B.-C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知扇形的圓心角為,其弧長是其半徑的2倍,則__________12.定義域為的奇函數(shù),當時,,則關于的方程所有根之和為,則實數(shù)的值為________13.若不等式的解集為,則不等式的解集為______.14.已知函數(shù)f(x)=cos(ωx+φ)(ω>0,|φ|≤),x=-為f(x)的零點,x=為y=f(x)圖象的對稱軸,且f(x)在(,)上單調,則ω的最大值為______15.有下列四個說法:①已知向量,,若與的夾角為鈍角,則;②若函數(shù)的圖象關于直線對稱,則;③函數(shù)在上單調遞減,在上單調遞增;④當時,函數(shù)有四個零點其中正確的是___________(填上所有正確說法的序號)16.函數(shù)為奇函數(shù),且對任意互不相等的,,都有成立,且,則的解集為______三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.如圖,邊長為的正方形所在平面與正三角形所在平面互相垂直,分別為的中點.(1)求四棱錐的體積;(2)求證:平面;(3)試問:在線段上是否存在一點,使得平面平面?若存在,試指出點的位置,并證明你的結論;若不存在,請說明理由.18.已知非空集合,(1)當時,求;(2)若,求實數(shù)的取值范圍19.已知函數(shù)(1)若,求實數(shù)a值;(2)若函數(shù)f(x)有兩個零點,求實數(shù)a的取值范圍20.近年來,隨著我市經(jīng)濟的快速發(fā)展,政府對民生越來越關注市區(qū)現(xiàn)有一塊近似正三角形的土地(如圖所示),其邊長為2百米,為了滿足市民的休閑需求,市政府擬在三個頂點處分別修建扇形廣場,即扇形和,其中與、分別相切于點,且與無重疊,剩余部分(陰影部分)種植草坪.設長為(單位:百米),草坪面積為(單位:萬平方米).(1)試用分別表示扇形和的面積,并寫出的取值范圍;(2)當為何值時,草坪面積最大?并求出最大面積.21.已知函數(shù).(1)求的值;你能發(fā)現(xiàn)與有什么關系?寫出你的發(fā)現(xiàn)并加以證明:(2)試判斷在區(qū)間上的單調性,并用單調性的定義證明.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】由結合弧度制求解即可.【詳解】∵,∴故選:B2、A【解析】由扇形面積公式計算【詳解】由題意,故選:A3、C【解析】利用指數(shù)函數(shù)、對數(shù)函數(shù)的單調性即可求解.【詳解】由為單調遞減函數(shù),則,為單調遞減函數(shù),則,為單調遞增函數(shù),則故.故選:C【點睛】本題考查了指數(shù)函數(shù)、對數(shù)函數(shù)的單調性比較指數(shù)式、對數(shù)式的大小,屬于基礎題.4、D【解析】利用輔助角公式化簡的解析式,再利用正弦型函數(shù)的圖象變換規(guī)律,正弦函數(shù)的圖象的對稱性,求得的值【詳解】,(其中,),將圖象向右平移個單位長度得到函數(shù)的圖象,得到,∴,,解得,故選D.5、D【解析】因為E是DC的中點,所以,∴,∴,考點:平面向量的幾何運算6、C【解析】先計算,再代入計算得到答案.【詳解】,則故選:【點睛】本題考查了分段函數(shù)的計算,意在考查學生的計算能力.7、C【解析】利用零點存在定理依次判斷各個選項即可.【詳解】由題意知:在上連續(xù)且單調遞增;對于A,,,內不存在零點,A錯誤;對于B,,,內不存在零點,B錯誤;對于C,,,則,內存在零點,C正確;對于D,,,內不存在零點,D錯誤.故選:C.8、B【解析】根據(jù)函數(shù)的圖象變換的原則,結合對數(shù)的運算性質,準確運算,即可求解.【詳解】由題意,將函數(shù)的圖像向左、向下各平移1個單位長度,可得.故選:B.9、A【解析】利用同角三角函數(shù)的基本關系,即可得到答案;【詳解】,故選:A10、C【解析】根據(jù)題意可得“”是真命題,故只要即可,求出的最大值,即可求出的范圍,從而可得出答案.【詳解】解:因為“”是假命題,所以其否定“”是真命題,故只要即可,因為的最大值為,所以,解得,所以實數(shù)m的最小值為.故選:C.二、填空題:本大題共6小題,每小題5分,共30分。11、-1【解析】由已知得,所以則,故答案.12、【解析】由題意,作函數(shù)y=f(x)與y=a的圖象如下,結合圖象,設函數(shù)F(x)=f(x)﹣a(0<a<1)的零點分別為x1,x2,x3,x4,x5,則x1+x2=﹣6,x4+x5=6,﹣log0.5(﹣x3+1)=a,x3=1﹣2a,故x1+x2+x3+x4+x5=﹣6+6+1﹣2a=1﹣2a,∵關于x的方程f(x)﹣a=0(0<a<1)所有根之和為1﹣,∴a=故答案為.點睛:函數(shù)的零點或方程的根的問題,一般以含參數(shù)的三次式、分式、以e為底的指數(shù)式或對數(shù)式及三角函數(shù)式結構的函數(shù)零點或方程根的形式出現(xiàn),一般有下列兩種考查形式:(1)確定函數(shù)零點、圖象交點及方程根的個數(shù)問題;(2)應用函數(shù)零點、圖象交點及方程解的存在情況,求參數(shù)的值或取值范圍問題研究方程根的情況,可以通過導數(shù)研究函數(shù)的單調性、最值、函數(shù)的變化趨勢等,根據(jù)題目要求,通過數(shù)形結合的思想去分析問題,可以使得問題的求解有一個清晰、直觀的整體展現(xiàn).同時在解題過程中要注意轉化與化歸、函數(shù)與方程、分類討論思想的應用13、【解析】由三個二次的關系求,根據(jù)分式不等式的解法求不等式的解集.【詳解】∵不等式的解集為∴,是方程的兩根,∴,∴可化為∴∴不等式的解集為,故答案為:.14、【解析】先根據(jù)是的零點,是圖像的對稱軸可轉化為周期的關系,從而求得的取值范圍,又根據(jù)所求值為最大值,所以從大到小對賦值驗證找到適合的最大值即可【詳解】由題意可得,即,解得,又因為在上單調,所以,即,因為要求的最大值,令,因為是的對稱軸,所以,又,解得,所以此時,在上單調遞減,即在上單調遞減,在上單調遞增,故在不單調,同理,令,,在上單調遞減,因為,所以在單調遞減,滿足題意,所以的最大值為5.【點睛】本題綜合考查三角函數(shù)圖像性質的運用,在這里需注意:兩對稱軸之間的距離為半個周期;相鄰對稱軸心之間的距離為半個周期;相鄰對稱軸和對稱中心之間的距離為個周期15、②③【解析】①:根據(jù)平面向量夾角的性質進行求解判斷;②:利用函數(shù)的對稱性,結合兩角和(差)的正余弦公式進行求解判斷即可;③:利用導數(shù)的性質、函數(shù)的奇偶性進行求解判斷即可.④:根據(jù)對數(shù)函數(shù)的性質,結合零點的定義進行求解判斷即可【詳解】①:因為與的夾角為鈍角,所以有且與不能反向共線,因此有,當與反向共線時,,所以有且,因此本說法不正確;②:因為函數(shù)的圖象關于直線對稱,所以有,即,于是有:,化簡,得,因為,所以,因此本說法正確;③:因為,所以函數(shù)偶函數(shù),,當時,單調遞增,即在上單調遞增,又因為該函數(shù)是偶函數(shù),所以該在上單調遞減,因此本說法正確;④:,問題轉化為函數(shù)與函數(shù)的交點個數(shù)問題,如圖所示:當時,,此時有四個交點,當時,,所以交點的個數(shù)不是四個,因此本說法不正確,故答案為:②③16、【解析】由條件可得函數(shù)的單調性,結合,分和利用單調性可解.【詳解】因為,時,,所以在上單調遞減,又因為為奇函數(shù),且,所以在上單調遞減,且.當時,不等式,得;當時,不等式,得.綜上,不等式的解集為.故答案:三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2)證明見解析;(3)存在,為中點,證明見解析.【解析】(1)由等腰三角形三線合一性質和面面垂直性質定理可證得平面,由棱錐體積公式可求得結果;(2)連結交于點,由三角形中位線性質可證得,由線面平行判定定理可得到結論;(3)當為中點時,由正方形的性質、線面垂直的性質,結合線面垂直的判定可證得平面,由面面垂直的判定定理可證得結論.【詳解】(1)為中點,為正三角形,.平面平面,平面平面,平面,平面.,,.(2)證明:連結交于點,連結.由四邊形為正方形知點為的中點,又為的中點,,平面,平面,平面.(3)存在點,當為中點時,平面平面.證明如下:因為四邊形是正方形,為的中點,,由(1)知:平面,平面,,又,平面.平面,平面平面.【點睛】關鍵點點睛:本題第三問考查了與面面垂直有關的存在性問題的處理,解題關鍵是能夠根據(jù)平面確定只要在上,必有,由此只需找到與面中的另一條與相交的直線垂直即可,進而鎖定的位置.18、(1);(2).【解析】(1)時,先解一元二次不等式,化簡集合A和B,再進行交集運算即可;(2)根據(jù)子集關系列不等式,解不等式即得結果.【詳解】解:(1)當時,,由,解得,,;(2)由(1)知,,解得,實數(shù)的取值范圍為.19、(1)(2)【解析】(1)根據(jù)即可求出實數(shù)a的值;(2)令,根據(jù)由求得的值,再根據(jù)正弦函數(shù)的性質分析的取值情況,結合題意即可得出答案.【小問1詳解】解:,∴,∴;【小問2詳解】解:令,則,由得,∵在[-,]上是增函數(shù),在[,]上是減函數(shù),且,∴時,x有兩個值;或時,x有一個值,其它情況,x值不存在,∴時函數(shù)f(x)只有1個零點,時,,要f(x)有2個零點,有,∴時,,要f(x)有2個零點,有,綜上,f(x)有兩個零點時,a的取值范圍是.20、(1),,;(2)時,草坪面積最大,最大面積為萬平方米.【解析】(1)因為,所以可得三個扇形的半徑,圓心角都為,由扇形的面積公式可得答案;(2)用三角形面積減去三個扇形面積可得草坪面積,再利用二次函數(shù)可求出最值.【詳解】(1),則,,在扇形中,的長為,所以,同理,.∵與無重疊,∴,即,則.又三個扇形都在三角形內部,則,∴.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025汽車銷售人員勞動合同范例
- 2025資金監(jiān)管的合同范本
- 2024年02月紹興銀行2024年社會招考筆試歷年參考題庫附帶答案詳解
- 2025汽車經(jīng)銷合作合同書
- xx汽車噴漆件項目可行性分析報告
- 鼓紙生產(chǎn)加工項目可行性研究報告
- 新建光纖連接器項目可行性研究報告
- 陶瓷加工項目實施方案
- (投資方案)立體車庫項目可行性研究報告
- 2025關于江蘇省超市(商場)食品采購的合同范文
- 玉溪大紅山鐵礦二期北采區(qū)采礦施工組織設計
- 2024年《多媒體技術與應用》 考試題庫及答案
- 必刷題2024六年級英語上冊語法規(guī)則專項專題訓練(含答案)
- 2024新教科版四年級上冊科學知識點總結精簡版
- 《朝花夕拾》閱讀推進課 教學設計-2023-2024學年統(tǒng)編版語文七年級下冊
- 人工智能在礦產(chǎn)勘探中的應用分析篇
- 2024山東省招聘社區(qū)工作者試題及答案
- DL∕T 5494-2014 電力工程場地地震安全性評價規(guī)程
- 宋代學者邵康節(jié)名著《漁樵問答》譯文
- 公園設施維修投標方案
- 土木工程材料智慧樹知到期末考試答案章節(jié)答案2024年山東建筑大學
評論
0/150
提交評論