北京市西城區(qū)156中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末預(yù)測試題含解析_第1頁
北京市西城區(qū)156中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末預(yù)測試題含解析_第2頁
北京市西城區(qū)156中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末預(yù)測試題含解析_第3頁
北京市西城區(qū)156中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末預(yù)測試題含解析_第4頁
北京市西城區(qū)156中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末預(yù)測試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

北京市西城區(qū)156中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末預(yù)測試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.將5名北京冬奧會志愿者分配到花樣滑冰、短道速滑、冰球和冰壺4個項目進行培訓(xùn),每名志愿者只分配到1個項目,每個項目至少分配1名志愿者,則不同的分配方案共有()A.60種 B.120種C.240種 D.480種2.在中,B=30°,BC=2,AB=,則邊AC的長等于()A. B.1C. D.23.已知雙曲線,過左焦點且與軸垂直的直線與雙曲線交于、兩點,若弦的長恰等于實鈾的長,則雙曲線的離心率為()A. B.C. D.4.已知點是雙曲線的左、右焦點,以線段為直徑的圓與雙曲線在第一象限的交點為,若,則()A.與雙曲線的實軸長相等B.的面積為C.雙曲線的離心率為D.直線是雙曲線的一條漸近線5.設(shè)為等差數(shù)列的前項和,若,,則公差的值為()A. B.2C.3 D.46.已知雙曲線的左、右焦點分別為,點A在雙曲線上,且軸,若則雙曲線的離心率等于()A. B.C.2 D.37.已知兩圓相交于兩點和,兩圓的圓心都在直線上,則的值為A. B.2C.3 D.08.若定義在R上的函數(shù)的圖象如圖所示,為函數(shù)的導(dǎo)函數(shù),則不等式的解集為()A. B.C. D.9.某班對期中成績進行分析,利用隨機數(shù)表法抽取樣本時,先將60個同學(xué)的成績按01,02,03,……,60進行編號,然后從隨機數(shù)表第9行第5列的數(shù)1開始向右讀,則選出的第6個個體是()(注:如下為隨機數(shù)表的第8行和第9行)6301637859169555671998105071751286735833211234297864560782524507443815510013A.07 B.25C.42 D.5210.函數(shù)y=ln(1﹣x)的圖象大致為()A. B.C D.11.已知各項均為正數(shù)的等比數(shù)列{},=5,=10,則=A. B.7C.6 D.12.若雙曲線的一條漸近線方程為.則()A. B.C.2 D.4二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù)是函數(shù)的導(dǎo)函數(shù),,對任意實數(shù)都有,則不等式的解集為___________.14.設(shè)雙曲線的焦點為,點為上一點,,則為_____.15.已知等比數(shù)列的前n項和為,且滿足,則_____________16.當(dāng)曲線與直線有兩個不同的交點時,實數(shù)k的取值范圍是____________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知為數(shù)列的前n項和,,且,,其中為常數(shù).(1)求證:數(shù)列為等差數(shù)列;(2)是否存在,使得是等差數(shù)列?并說明理由.18.(12分)已知點為拋物線的焦點,點在拋物線上,的面積為1.(1)求拋物線的標準方程;(2)設(shè)點是拋物線上異于點的一點,直線與直線交于點,過作軸的垂線交拋物線于點,求證:直線過定點.19.(12分)為深入學(xué)習(xí)貫徹總書記在黨史學(xué)習(xí)教育動員大會上的重要講話精神和中共中央有關(guān)決策部署,推動教育系統(tǒng)圍繞建黨百年重大主題,深化中學(xué)在校師生理想信念教育,引導(dǎo)師生學(xué)史明理、學(xué)史增信、學(xué)史崇德、學(xué)史力行,以昂揚的狀態(tài)迎接中國共產(chǎn)黨建黨周年,哈工大附中高二年級組織本年級同學(xué)開展了一場黨史知識競賽.為了解本次知識競賽的整體情況,隨機抽取了名學(xué)生的成績作為樣本進行統(tǒng)計,得到如圖所示的頻率分布直方圖(1)求直方圖中a的值,并求該次知識競賽成績的第50百分位數(shù)(精確到0.1);(2)已知該樣本分數(shù)在的學(xué)生中,男生占,女生占現(xiàn)從該樣本分數(shù)在的學(xué)生中隨機抽出人,求至少有人是女生的概率.20.(12分)如圖所示,在四棱錐中,底面是正方形,側(cè)棱底面,,是的中點,過點作交于點.求證:(1)平面;(2)平面.21.(12分)已知正項等比數(shù)列的前項和為,滿足,.記.(1)求數(shù)列的通項公式;(2)設(shè)數(shù)列前項和,求使得不等式成立的的最小值.22.(10分)2017年廈門金磚會晤期間產(chǎn)生碳排放3095噸.2018年起廈門市政府在下潭尾濕地生態(tài)公園通過種植紅樹林的方式中和會晤期間產(chǎn)生的碳排放,擬用20年時間將碳排放全部吸收,實現(xiàn)“零碳排放”目標,向世界傳遞低碳,環(huán)保辦會的積極信號,踐行金磚國家倡導(dǎo)的可持續(xù)發(fā)展精神據(jù)研究估算,紅樹林的年碳吸收量隨著林齡每年遞增2%,2018年公園已有的紅樹林年碳吸收量為130噸,如果從2019年起每年新種植紅樹林若干畝,新種植的紅樹林當(dāng)年的年碳吸收量為m()噸.2018年起,紅樹林的年碳吸收量依次記,,,…(1)①寫出一個遞推公式,表示與之間的關(guān)系;②證明:是等比數(shù)列,并求的通項公式;(2)為了提前5年實現(xiàn)廈門會晤“零碳排放”的目標,m的最小值為多少?參考數(shù)據(jù):,,

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】先確定有一個項目中分配2名志愿者,其余各項目中分配1名志愿者,然后利用組合,排列,乘法原理求得.【詳解】根據(jù)題意,有一個項目中分配2名志愿者,其余各項目中分配1名志愿者,可以先從5名志愿者中任選2人,組成一個小組,有種選法;然后連同其余三人,看成四個元素,四個項目看成四個不同的位置,四個不同的元素在四個不同的位置的排列方法數(shù)有4!種,根據(jù)乘法原理,完成這件事,共有種不同的分配方案,故選:C.【點睛】本題考查排列組合的應(yīng)用問題,屬基礎(chǔ)題,關(guān)鍵是首先確定人數(shù)的分配情況,然后利用先選后排思想求解.2、B【解析】利用余弦定理即得【詳解】由余弦定理,得,解得AC=1故選:B.3、B【解析】求出,進而求出,之間的關(guān)系,即可求解結(jié)論【詳解】解:由題意,直線方程為:,其中,因此,設(shè),,,,解得,得,,弦的長恰等于實軸的長,,,故選:B4、B【解析】由題意及雙曲線的定義可得,的值,進而可得A不正確,計算可判斷B正確,再求出,的關(guān)系可得C不正確,求出,的關(guān)系,進而求出漸近線的方程,可得D不正確【詳解】因為,又由題意及雙曲線的定義可得:,則,,所以A不正確;因為在以為直徑的圓上,所以,所以,所以B正確;在△中,由勾股定理可得,即,所以離心率,所以C不正確;由C的分析可知:,故,所以漸近線的方程為,即,所以D不正確;故選:B5、C【解析】根據(jù)等差數(shù)列前項和公式進行求解即可.【詳解】,故選:C6、B【解析】由雙曲線定義結(jié)合通徑公式、化簡得出,最后得出離心率.【詳解】,,,解得故選:B7、C【解析】根據(jù)條件知:兩圓的圓心的所在的直線與兩圓的交點所在的直線垂直,以及兩圓的交點的中點在兩圓的圓心的所在的直線上,由此得到方程,得解.【詳解】由已知兩圓的交點與兩圓的圓心的所在的直線垂直,,所以,又因為兩圓的交點的中點在兩圓的圓心所在的直線上,所以,解得:,所以,故選.【點睛】此題主要考查圓與圓的位置關(guān)系,解答此題的關(guān)鍵是需知兩圓的圓心所在的直線與兩圓的交點所在的直線垂直,并且兩圓的交點的中點在兩圓的圓心所在的直線上,此題屬于基礎(chǔ)題.8、A【解析】由函數(shù)單調(diào)性得出和的解,然后分類討論解不等式可得【詳解】由圖象可知:在為正,在為負,,可化為:或,解得或故選:A9、D【解析】從指定位置起依次讀兩位數(shù)碼,超出編號的數(shù)刪除.【詳解】根據(jù)題意,從隨機數(shù)表第9行第5列的數(shù)1開始向右讀,依次選出的號碼數(shù)是:12,34,29,56,07,52;所以第6個個體是52.故選:D.10、C【解析】根據(jù)函數(shù)的定義域和特殊點,判斷出正確選項.【詳解】由,解得,也即函數(shù)的定義域為,由此排除A,B選項.當(dāng)時,,由此排除D選項.所以正確的為C選項.故選:C【點睛】本小題主要考查函數(shù)圖像識別,屬于基礎(chǔ)題.11、A【解析】由等比數(shù)列的性質(zhì)知,a1a2a3,a4a5a6,a7a8a9成等比數(shù)列,所以a4a5a6=故答案為考點:等比數(shù)列的性質(zhì)、指數(shù)冪的運算、根式與指數(shù)式的互化等知識,轉(zhuǎn)化與化歸的數(shù)學(xué)思想12、C【解析】求出漸近線方程為,列出方程求出.【詳解】雙曲線的漸近線方程為,因為,所以,所以.故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】令則,∴在R上是減函數(shù)又等價于∴故不等式的解集是答案:點睛:本題考查用構(gòu)造函數(shù)的方法解不等式,即通過構(gòu)造合適的函數(shù),利用函數(shù)的單調(diào)性求得不等式的解集,解題時要注意常見的函數(shù)類型,如在本題中由于涉及到,故可從以下兩種情況入手解決:(1)對于,可構(gòu)造函數(shù);(2)對于,可構(gòu)造函數(shù)14、【解析】將方程化為雙曲線的標準方程,再利用雙曲線的定義進行求解.【詳解】將化為,所以,,由雙曲線的定義,得:,即,所以或(舍)故答案為:.15、##31.5【解析】根據(jù)等比數(shù)列通項公式,求出,代入求和公式,即可得答案.【詳解】因為數(shù)列為等比數(shù)列,所以,又,所以,所以.故答案為:16、【解析】求出直線恒過的定點,結(jié)合曲線的圖象,數(shù)形結(jié)合,找出臨界狀態(tài),即可求得的取值范圍.【詳解】因為,故可得,其表示圓心為,半徑為的圓的上半部分;因為,即,其表示過點,且斜率為的直線.在同一坐標系下作圖如下:不妨設(shè)點,直線斜率為,且過點與圓相切的直線斜率為數(shù)形結(jié)合可知:要使得曲線與直線有兩個不同的交點,只需即可.容易知:;不妨設(shè)過點與相切的直線方程為,則由直線與圓相切可得:,解得,故.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)詳見解析;(2)存在時是等差數(shù)列,詳見解析.【解析】(1)利用與的關(guān)系可得,再結(jié)合條件即證;(2)由題可得,,若是等差數(shù)列,可得,進而可求數(shù)列的通項公式,即證.【小問1詳解】∵,∴,∴,又,∴,∴,∴數(shù)列為等差數(shù)列;【小問2詳解】∵,,∴,又,∴,若是等差數(shù)列,則,即,解得,當(dāng)時,由,∴數(shù)列的奇數(shù)項構(gòu)成的數(shù)列為首項為1,公差為2的等差數(shù)列,∴,即,為奇數(shù),∴數(shù)列的偶數(shù)項構(gòu)成的數(shù)列為首項為2,公差為2的等差數(shù)列,∴,即,為偶數(shù),綜上可得,當(dāng)時,,,故存在時,使數(shù)列是等差數(shù)列.18、(1)(2)證明見解析【解析】(1)由條件列方程求,由此可得拋物線方程;(2)方法一:聯(lián)立直線與拋物線方程,結(jié)合條件三點共線,可證明直線過定點,方法二:聯(lián)立直線與拋物線方程,聯(lián)立直線與直線求,由垂直與軸列方程化簡,可證明直線過定點.【小問1詳解】因為點在拋物線上,所以,即,,因為,故解得,拋物線的標準方程為【小問2詳解】設(shè)直線的方程為,由,得,所以,由(1)可知當(dāng)時,,此時直線的方程為,若時,因為三點共線,所以,即,又因為,,化簡可得,又,進而可得,整理得,因為所以,此時直線的方程為,直線恒過定點又直線也過點,綜上:直線過定點解法二:設(shè)方程,得若直線斜率存在時斜率方程為即解得:,于是有整理得.(*)代入上式可得所以直線方程為直線過定點.若直線斜率不存在時,直線方程為所以P點坐標為,M點坐標為此時直線方程為過點綜上:直線過定點.【點睛】解決直線與拋物線的綜合問題時,要注意:(1)注意觀察應(yīng)用題設(shè)中的每一個條件,明確確定直線、拋物線的條件;(2)強化有關(guān)直線與拋物線聯(lián)立得出一元二次方程后的運算能力,重視根與系數(shù)之間的關(guān)系、弦長、斜率、三角形的面積等問題19、(1)(2)【解析】(1)利用頻率和為1求出a;利用百分位數(shù)的定義求出知識競賽成績的第50百分位數(shù);(2)先利用分層抽樣求出男、女生的人數(shù),利用古典概型求概率.【小問1詳解】,由,解得設(shè)該次知識競賽成績的第50百分位數(shù)為x,則,解得:.即該次知識競賽成績的第50百分位數(shù)為【小問2詳解】由頻率分布直方圖可知:分數(shù)在)的人數(shù)有人,所以這人中,女生有人,記為、,男生有人,記為、、、從這人中隨機選取人,基本事件為:、、、、、、、、、、、、、、,共種不同取法;則至少有人是女生的基本事件為、、、、、、、、,共種不同取法,則所求的概率為20、(1)證明見解析;(2)證明見解析.【解析】(1)連結(jié)、,交于點,連結(jié),通過即可證明;(2)通過,

可證平面,即得,進而通過平面得,結(jié)合即證.詳解】證明:(1)連結(jié)、,交于點,連結(jié),底面正方形,∴是中點,點是的中點,.平面,

平面,∴平面.(2),點是的中點,.底面是正方形,側(cè)棱底面,∴,

,且

,∴平面,∴,又,∴平面,∴,,,平面.【點睛】本題考查線面平行和線面垂直的證明,屬于基礎(chǔ)題.21、(1),.(2)5.【解析】(1)根據(jù)數(shù)列的遞推公式探求出其項間關(guān)系,由此求出的公比,進而求得,的通項公式.(2)利用(1)的結(jié)論結(jié)合錯位相減法求出,再將不等式變形,經(jīng)推理計算得解.【小問1詳解】解:設(shè)正項等比數(shù)列的公比為,當(dāng)時,,即,則有,即,而,解得,又,則,所以,所以數(shù)列,的通項公式分別為:,.【小問2詳解】解:由(1)知,,則,則,兩式相減得:于是得,由得:,即,令,,顯

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論