2025屆山東省冠縣武訓(xùn)高級(jí)中學(xué)高二數(shù)學(xué)第一學(xué)期期末檢測(cè)模擬試題含解析_第1頁(yè)
2025屆山東省冠縣武訓(xùn)高級(jí)中學(xué)高二數(shù)學(xué)第一學(xué)期期末檢測(cè)模擬試題含解析_第2頁(yè)
2025屆山東省冠縣武訓(xùn)高級(jí)中學(xué)高二數(shù)學(xué)第一學(xué)期期末檢測(cè)模擬試題含解析_第3頁(yè)
2025屆山東省冠縣武訓(xùn)高級(jí)中學(xué)高二數(shù)學(xué)第一學(xué)期期末檢測(cè)模擬試題含解析_第4頁(yè)
2025屆山東省冠縣武訓(xùn)高級(jí)中學(xué)高二數(shù)學(xué)第一學(xué)期期末檢測(cè)模擬試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩13頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2025屆山東省冠縣武訓(xùn)高級(jí)中學(xué)高二數(shù)學(xué)第一學(xué)期期末檢測(cè)模擬試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫(xiě)清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書(shū)寫(xiě)的答案無(wú)效;在草稿紙、試卷上答題無(wú)效。4.作圖可先使用鉛筆畫(huà)出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知下列四個(gè)命題,其中正確的是()A. B.C. D.2.設(shè)P是雙曲線上的點(diǎn),若,是雙曲線的兩個(gè)焦點(diǎn),則()A.4 B.5C.8 D.103.小王與小張二人參加某射擊比賽預(yù)賽的五次測(cè)試成績(jī)?nèi)缦卤硭?,設(shè)小王與小張成績(jī)的樣本平均數(shù)分別為和,方差分別為和,則()第一次第二次第三次第四次第五次小王得分(環(huán))910579小張得分(環(huán))67557A. B.C. D.4.已知a、b是兩條不同的直線,α、β、γ是三個(gè)不同的平面,則下列命題正確的是()A.若a∥α,a∥b,則b∥α B.若a∥α,a∥β,則α∥βC.若α⊥γ,β⊥γ,則α∥β D.若a⊥α,b⊥α,則a∥b5.直線過(guò)橢圓內(nèi)一點(diǎn),若點(diǎn)為弦的中點(diǎn),設(shè)為直線的斜率,為直線的斜率,則的值為()A. B.C. D.6.拋物線型太陽(yáng)灶是利用太陽(yáng)能輻射的一種裝置.當(dāng)旋轉(zhuǎn)拋物面的主光軸指向太陽(yáng)的時(shí)候,平行的太陽(yáng)光線入射到旋轉(zhuǎn)拋物面表面,經(jīng)過(guò)反光材料的反射,這些反射光線都從它的焦點(diǎn)處通過(guò),形成太陽(yáng)光線的高密集區(qū),拋物面的焦點(diǎn)在它的主光軸上.如圖所示的太陽(yáng)灶中,灶深CD即焦點(diǎn)到灶底(拋物線的頂點(diǎn))的距離為1m,則灶口直徑AB為()A.2m B.3mC.4m D.5m7.設(shè),是雙曲線()的左、右焦點(diǎn),是坐標(biāo)原點(diǎn).過(guò)作的一條漸近線的垂線,垂足為.若,則的離心率為A. B.C. D.8.在正方體中,P,Q兩點(diǎn)分別從點(diǎn)B和點(diǎn)出發(fā),以相同的速度在棱BA和上運(yùn)動(dòng)至點(diǎn)A和點(diǎn),在運(yùn)動(dòng)過(guò)程中,直線PQ與平面ABCD所成角的變化范圍為A. B.C. D.9.設(shè)AB是橢圓()的長(zhǎng)軸,若把AB一百等分,過(guò)每個(gè)分點(diǎn)作AB的垂線,交橢圓的上半部分于P1、P2、…、P99,F(xiàn)1為橢圓的左焦點(diǎn),則的值是()A. B.C. D.10.過(guò)雙曲線的右焦點(diǎn)有一條弦是左焦點(diǎn),那么的周長(zhǎng)為()A.28 B.C. D.11.已知實(shí)數(shù),滿足,則的最小值是()A. B.C. D.12.圓:與圓:的位置關(guān)系是()A.內(nèi)切 B.外切C.相交 D.相離二、填空題:本題共4小題,每小題5分,共20分。13.已知雙曲線的兩條漸近線的夾角為,則雙曲線的實(shí)軸長(zhǎng)為_(kāi)___14.雙曲線的離心率為2,寫(xiě)出滿足條件的一個(gè)雙曲線的標(biāo)準(zhǔn)方程__________.15.?dāng)?shù)據(jù)6,8,9,10,7的方差為_(kāi)_____16.某次實(shí)驗(yàn)得到如下7組數(shù)據(jù),通過(guò)判斷知道與具有線性相關(guān)性,其線性回歸方程為,則______.(參考公式:)12345676.06.26.36.46.46.76.8三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)設(shè)數(shù)列的前項(xiàng)和為,,且,,(1)若(i)求;(ii)求證數(shù)列成等差數(shù)列(2)若數(shù)列為遞增數(shù)列,且,試求滿足條件的所有正整數(shù)的值18.(12分)如圖,已知圓錐SO底面圓的半徑r=1,直徑AB與直徑CD垂直,母線SA與底面所成的角為.(1)求圓錐SO的側(cè)面積;(2)若E為母線SA的中點(diǎn),求二面角E-CD-B的大小.(結(jié)果用反三角函數(shù)值表示)19.(12分)如圖,在四棱錐中,平面,是等邊三角形.(1)證明:平面平面.(2)求點(diǎn)到平面的距離.20.(12分)已知點(diǎn),橢圓:離心率為,是橢圓的右焦點(diǎn),直線的斜率為,為坐標(biāo)原點(diǎn).設(shè)過(guò)點(diǎn)的動(dòng)直線與相交于,兩點(diǎn)(1)求橢圓的方程(2)是否存在直線,使得的面積為?若存在,求出的方程;若不存在,請(qǐng)說(shuō)明理由21.(12分)如圖,三棱錐中,為等邊三角形,且面面,(1)求證:;(2)當(dāng)與平面BCD所成角為45°時(shí),求二面角的余弦值22.(10分)已知拋物線C:,直線l經(jīng)過(guò)點(diǎn),且與拋物線C交于M,N兩點(diǎn),其中.(1)若,且,求點(diǎn)M的坐標(biāo);(2)是否存在正數(shù)m,使得以MN為直徑的圓經(jīng)過(guò)坐標(biāo)原點(diǎn)O,若存在,請(qǐng)求出正數(shù)m,若不存在,請(qǐng)說(shuō)明理由.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】根據(jù)基本初等函數(shù)的求導(dǎo)公式和求導(dǎo)法則即可求解判斷.【詳解】,故A錯(cuò)誤;,故B正確;,故C錯(cuò)誤;,故D錯(cuò)誤.故選:B.2、C【解析】根據(jù)雙曲線的定義可得:,結(jié)合雙曲線的方程可得答案.【詳解】由雙曲線可得根據(jù)雙曲線的定義可得:故選:C3、C【解析】根據(jù)圖表數(shù)據(jù)可以看出小王和小張的平均成績(jī)和成績(jī)波動(dòng)情況.【詳解】解:從圖表中可以看出小王每次的成績(jī)均不低于小張,但是小王成績(jī)波動(dòng)比較大,故設(shè)小王與小張成績(jī)的樣本平均數(shù)分別為和,方差分別為和.可知故選:C4、D【解析】根據(jù)空間線、面的位置關(guān)系有關(guān)定理,對(duì)四個(gè)選項(xiàng)逐一分析排除,由此得出正確選項(xiàng).【詳解】對(duì)于A選項(xiàng),直線有可能平面內(nèi),故A選項(xiàng)錯(cuò)誤.對(duì)于B選項(xiàng),兩個(gè)平面有可能相交,平行于它們的交線,故B選項(xiàng)錯(cuò)誤.對(duì)于C選項(xiàng),可能相交,故C選項(xiàng)錯(cuò)誤.根據(jù)線面垂直的性質(zhì)定理可知D選項(xiàng)正確.故選:D.5、A【解析】設(shè)點(diǎn)與的坐標(biāo),進(jìn)而可表示與,再結(jié)合兩點(diǎn)在橢圓上,可得的值.【詳解】設(shè)點(diǎn)與,則,,所以,,又點(diǎn)與在橢圓上,所以,,作差可得,即,所以,故選:A.6、C【解析】建立如圖所示的平面直角坐標(biāo)系,設(shè)拋物線的方程為,根據(jù)是拋物線的焦點(diǎn),求得拋物線的方程,進(jìn)而求得的長(zhǎng).【詳解】由題意,建立如圖所示的平面直角坐標(biāo)系,O與C重合,設(shè)拋物線的方程為,由題意可得是拋物線的焦點(diǎn),即,可得,所以拋物線的方程為,當(dāng)時(shí),,所以.故選:C.7、B【解析】分析:由雙曲線性質(zhì)得到,然后在和在中利用余弦定理可得詳解:由題可知在中,在中,故選B.點(diǎn)睛:本題主要考查雙曲線的相關(guān)知識(shí),考查了雙曲線的離心率和余弦定理的應(yīng)用,屬于中檔題8、C【解析】先過(guò)點(diǎn)作于點(diǎn),連接,根據(jù)題意,得到即為直線與平面所成的角,設(shè)正方體棱長(zhǎng)為,設(shè),推出,進(jìn)而可求出結(jié)果.【詳解】過(guò)點(diǎn)作于點(diǎn),連接,因?yàn)樗睦庵鶠檎襟w,所以易得平面,因此即為直線與平面所成的角,設(shè)正方體棱長(zhǎng)為,設(shè),則,,因?yàn)閮牲c(diǎn)分別從點(diǎn)和點(diǎn)出發(fā),以相同的速度在棱和上運(yùn)動(dòng)至點(diǎn)和點(diǎn),所以,因此,所以,因?yàn)?,所以,則,因此.故選:C.【點(diǎn)睛】本題主要考查求線面角的取值范圍,熟記線面角的定義即可,屬于??碱}型.9、D【解析】根據(jù)橢圓的定義,寫(xiě)出,可求出的和,又根據(jù)關(guān)于縱軸成對(duì)稱分布,得到結(jié)果詳解】設(shè)橢圓右焦點(diǎn)為F2,由橢圓的定義知,2,,,由題意知,,,關(guān)于軸成對(duì)稱分布,又,故所求的值為故選:D10、C【解析】根據(jù)雙曲線方程得,,由雙曲線的定義,證出,結(jié)合即可算出△的周長(zhǎng)【詳解】雙曲線方程為,,根據(jù)雙曲線的定義,得,,,,相加可得,,,因此△的周長(zhǎng),故選:C11、A【解析】將化成,即可求出的最小值【詳解】由可化為,所以,解得,因此最小值是故選:A12、A【解析】先計(jì)算兩圓心之間的距離,判斷距離和半徑和、半徑差之間的關(guān)系即可.【詳解】圓圓心,半徑,圓圓心,半徑,兩圓心之間的距離,故兩圓內(nèi)切.故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)已知條件求得,由此求得實(shí)軸長(zhǎng).【詳解】由于,雙曲線的漸近線方程為,所以雙曲線的漸近線與軸夾角小于,由得,實(shí)軸長(zhǎng)故答案為:14、(答案不唯一例如:等,只需滿足即可)【解析】根據(jù)離心率和的關(guān)系,可得到,只要滿足以上關(guān)系的即可【詳解】由題可知,又,所以,只要滿足以上關(guān)系即可.,答案不唯一例如:等故答案為:(答案不唯一例如:等,只需滿足即可)15、2【解析】首先求出數(shù)據(jù)的平均值,再應(yīng)用方差公式求它們的方差.【詳解】由題設(shè),平均值為,∴方差.故答案為:2.16、9##【解析】求得樣本中心點(diǎn)的坐標(biāo),代入回歸直線,即可求得.詳解】根據(jù)表格數(shù)據(jù)可得:故,解得.故答案為:.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);詳見(jiàn)解析;(2)5.【解析】(1)由題可得,由條件可依次求各項(xiàng),即得;猜想,用數(shù)學(xué)歸納法證明即得;(2)設(shè),由題可得,進(jìn)而可得,結(jié)合條件即求.【小問(wèn)1詳解】(i)∵,且,,,∴,,,∴,,,又,,,∴,∴,解得,,解得,,解得,,解得,∴;(ii)由,,,,猜想數(shù)列是首項(xiàng),公差為的等差數(shù)列,,用數(shù)學(xué)歸納法證明:當(dāng)時(shí),,成立;假設(shè)時(shí),等式成立,即,則時(shí),,∴,∴當(dāng)時(shí),等式也成立,∴,∴數(shù)列是首項(xiàng),公差為的等差數(shù)列.【小問(wèn)2詳解】設(shè),由,,即,∴,又,,,∴,,,,,,∴,,,∴,又?jǐn)?shù)列為遞增數(shù)列,∴,解得,由,∴,解得.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:第一問(wèn)的關(guān)鍵是由條件猜想,然后數(shù)學(xué)歸納法證明,第二問(wèn)求出,,即得.18、(1)(2)【解析】(1)先根據(jù)母線與底面的夾角求出圓錐的母線長(zhǎng),然后根據(jù)圓錐的側(cè)面積公式即可(2)利用三角形的中位線性質(zhì),先求出二面角,然后利用二面角與二面角的互補(bǔ)關(guān)系即可求得【小問(wèn)1詳解】根據(jù)母線SA與底面所成的角為,且底面圓的半徑可得:則圓錐的側(cè)面積為:【小問(wèn)2詳解】如圖所示,過(guò)點(diǎn)作底面的垂線交于,連接,則為的中位線則有:,,易知,則,又直徑AB與直徑CD垂直,則則有:為二面角可得:又二面角與二面角互為補(bǔ)角,則二面角的余弦值為故二面角大小為19、(1)證明見(jiàn)解析;(2).【解析】(1)根據(jù)等邊三角形的性質(zhì)、線面垂直的性質(zhì),結(jié)合面面垂直的判定定理進(jìn)行證明即可;(2)利用余弦定理,結(jié)合三棱錐的等積性進(jìn)行求解即可.【小問(wèn)1詳解】證明:設(shè),因?yàn)槭堑冗吶切?,且,所以是的中點(diǎn),則.又,所以,所以,即.又平面平面,所以.又,所以平面.因?yàn)槠矫?,所以平面平?【小問(wèn)2詳解】解:因?yàn)?,所?在中,,所以,則又平面,所以.如圖,連接,則,所以.設(shè)點(diǎn)到平面的距離為,因?yàn)椋?,解得,即點(diǎn)到平面的距離為.20、(1);(2)存在;或.【解析】(1)設(shè),由,,,求得的值即可得橢圓的方程;(2)設(shè),,直線的方程為與橢圓方程聯(lián)立可得,,進(jìn)而可得弦長(zhǎng),求出點(diǎn)到直線的距離,解方程,求得的值即可求解.【小問(wèn)1詳解】設(shè),因?yàn)橹本€的斜率為,,所以,可得,又因?yàn)?,所以,所以,所以橢圓的方程為【小問(wèn)2詳解】假設(shè)存在直線,使得的面積為,當(dāng)軸時(shí),不合題意,設(shè),,直線的方程為,聯(lián)立消去得:,由可得或,,,所以,點(diǎn)到直線的距離,所以,整理可得:即,所以或,所以或,所以存在直線:或使得的面積為.21、(1)證明見(jiàn)解析;(2).【解析】(1)根據(jù)給定條件證得平面即可推理作答.(2)由與平面BCD所成角確定正邊長(zhǎng)與CD長(zhǎng)的關(guān)系,再作出二面角的平面角,借助余弦定理計(jì)算作答.【小問(wèn)1詳解】在三棱錐中,平面平面,平面平面,而,平面,因此有平面,又有平面,所以.【小問(wèn)2詳解】取BC中點(diǎn)F,連接AF,DF,如圖,因?yàn)榈冗吶切危瑒t,而平面平面,平面平面,平面,于是得平面,是與平面BCD所成角,即,令,則,因,即有,由(1)知,,則有,過(guò)C作交AD于O,在平面內(nèi)過(guò)O作交BD于E,連CE,從而得是二面角的平面角,中,,,中,由余弦定理得,,,顯然E是斜邊中點(diǎn),則,中,由余弦定理得,

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論