版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
景德鎮(zhèn)市重點中學(xué)2025屆數(shù)學(xué)高二上期末達標檢測試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.直線與直線的位置關(guān)系是()A.相交但不垂直 B.平行C.重合 D.垂直2.已知橢圓方程為,則該橢圓的焦距為()A.1 B.2C. D.3.若圓C與直線:和:都相切,且圓心在y軸上,則圓C的方程為()A. B.C. D.4.在空間直角坐標系中,,,平面的一個法向量為,則平面與平面夾角的正弦值為()A. B.C. D.5.已知雙曲線,過其右焦點作漸近線的垂線,垂足為,延長交另一條漸近線于點A.已知為原點,且,則()A. B.C. D.6.已知O為坐標原點,,點P是上一點,則當取得最小值時,點P的坐標為()A. B.C. D.7.如圖,在直三棱柱中,且,點E為中點.若平面過點E,且平面與直線AB所成角和平面與平面所成銳二面角的大小均為30°,則這樣的平面有()A.1個 B.2個C.3個 D.4個8.圓()上點到直線的最小距離為1,則A.4 B.3C.2 D.19.設(shè),若,則()A. B.C. D.10.在中,若,,,則此三角形解的情況為()A.無解 B.兩解C.一解 D.解的個數(shù)不能確定11.已知圓:的面積被直線平分,圓:,則圓與圓的位置關(guān)系是()A.相離 B.相交C.內(nèi)切 D.外切12.已知函數(shù)的圖象如圖所示,則其導(dǎo)函數(shù)的圖象可能是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.數(shù)列滿足,則_______________.14.已知直線與拋物線相交于A,B兩點,且,則拋物線C的準線方程為___________.15.已知正數(shù)、滿足,則的最大值為__________16.如果圓錐的底面圓半徑為1,母線長為2,則該圓錐的側(cè)面積為___三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知圓,直線(1)判斷直線l與圓C的位置關(guān)系;(2)過點作圓C的切線,求切線的方程18.(12分)某市對排污水進行綜合治理,征收污水處理費,系統(tǒng)對各廠一個月內(nèi)排出的污水量x噸收取的污水處理費y元,運行程序如圖所示:INPUTxIFTHENELSEIFTHENELSEENDIFENDIFPRINTyEND(1)請寫出y與x的函數(shù)關(guān)系式;(2)求排放污水150噸的污水處理費用.19.(12分)設(shè)數(shù)列的前項和為,,且,,(1)若(i)求;(ii)求證數(shù)列成等差數(shù)列(2)若數(shù)列為遞增數(shù)列,且,試求滿足條件的所有正整數(shù)的值20.(12分)已知函數(shù),且(1)求曲線在點處的切線方程;(2)求函數(shù)在區(qū)間上的最小值21.(12分)已知數(shù)列的前n項和為,,且.(1)求數(shù)列的通項公式;(2)在與之間插入n個數(shù),使這個數(shù)組成一個公差為的等差數(shù)列,求證:.22.(10分)已知橢圓C:經(jīng)過點,且離心率為(1)求橢圓C的方程;(2)是否存在⊙O:,使得⊙O的任意切線l與橢圓交于A,B兩點,都有.若存在,求出r的值,并求此時△AOB的面積S的取值范圍;若不存在,請說明理由
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】把直線化簡后即可判斷.【詳解】直線可化為,所以直線與直線的位置關(guān)系是重合.故選:C2、B【解析】根據(jù)橢圓中之間的關(guān)系,結(jié)合橢圓焦距的定義進行求解即可.【詳解】由橢圓的標準方程可知:,則焦距為,故選:B.3、B【解析】首先求出兩平行直線間的距離,即可求出圓的半徑,設(shè)圓心坐標為,,利用圓心到直線的距離等于半徑得到方程,求出的值,即可得解;【詳解】解:因為直線:和:的距離,由圓C與直線:和:都相切,所以圓的半徑為,又圓心在軸上,設(shè)圓心坐標為,,所以圓心到直線的距離等于半徑,即,所以或(舍去),所以圓心坐標為,故圓的方程為;故選:B4、A【解析】根據(jù)給定條件求出平面的法向量,再借助空間向量夾角公式即可計算作答.【詳解】設(shè)平面的法向量為,則,令,得,令平面與平面夾角為,則,,所以平面與平面夾角的正弦值為.故選:A5、C【解析】畫出圖象,結(jié)合漸近線方程得到,,進而得到,結(jié)合漸近線的斜率及角度關(guān)系,列出方程,求出,從而求出.【詳解】漸近線為,如圖,過點F作FB垂直于點B,交于點A,則到漸近線距離為,則,又,由勾股定理得:,則,又,,所以,解得:,所以.故選:C6、A【解析】根據(jù)三點共線,可得,然后利用向量的減法坐標運算,分別求得,最后計算,經(jīng)過化簡觀察,可得結(jié)果.【詳解】設(shè),則則∴當時,取最小值為-10,此時點P的坐標為.故選:A【點睛】本題主要考查向量數(shù)量積的坐標運算,難點在于三點共線,審清題干,簡單計算,屬基礎(chǔ)題.7、B【解析】構(gòu)造出長方體,取中點連接然后利用臨界位置分情況討論即可.【詳解】如圖,構(gòu)造出長方體,取中點,連接則所有過點與成角的平面,均與以為軸的圓錐相切,過點繞且與成角,當與水平面垂直且在面的左側(cè)(在長方體的外面)時,與面所成角為75°(與面成45°,與成30°),過點繞旋轉(zhuǎn),轉(zhuǎn)一周,90°顯然最大,到了另一個邊界(在面與之間)為15度,即與面所成角從75°→90°→15°→90°→75°變化,此過程中,有兩次角為30
,綜上,這樣的平面α有2個,故選:B.8、A【解析】根據(jù)題意可得,圓心到直線的距離等于,即,求得,所以A選項是正確的.【點睛】判斷直線與圓的位置關(guān)系的常見方法:(1)幾何法:利用d與r的關(guān)系.(2)代數(shù)法:聯(lián)立方程之后利用判斷.(3)點與圓的位置關(guān)系法:若直線恒過定點且定點在圓內(nèi),可判斷直線與圓相交.上述方法中常用的是幾何法,點與圓的位置關(guān)系法適用于動直線問題9、B【解析】先求出,再利用二倍角公式、和差角公式即可求解.【詳解】因為,且,所以.所以,,所以.故選:B10、C【解析】求出的值,結(jié)合大邊對大角定理可得出結(jié)論.【詳解】由正弦定理可得可得,因為,則,故為銳角,故滿足條件的只有一個.故選:C.11、D【解析】根據(jù)題意,圓:的面積被直線平分,即直線經(jīng)過圓的圓心,由此求出兩圓的圓心和半徑,然后判斷兩個圓的位置關(guān)系即可【詳解】根據(jù)題意,圓:,即,其圓心為,半徑,圓:的面積被直線平分,即直線經(jīng)過圓的圓心,則有1?m+1=0,解可得m=2,即所以圓的圓心(1,?1),半徑為1,圓的標準方程是,圓心(?2,3),半徑為4,其圓心距,所以兩個圓外切,故選:D.12、A【解析】根據(jù)原函數(shù)圖象判斷出函數(shù)單調(diào)性,由此判斷導(dǎo)函數(shù)的圖象.【詳解】原函數(shù)在上從左向右有增、減、增,個單調(diào)區(qū)間;在上遞減.所以導(dǎo)函數(shù)在上從左向右應(yīng)為:正、負、正;在上應(yīng)為負.所以A選項符合.故選:A二、填空題:本題共4小題,每小題5分,共20分。13、【解析】利用來求得,進而求得正確答案.【詳解】,,是數(shù)列是首項為,公差為的等差數(shù)列,所以,所以.故答案為:14、【解析】將直線與拋物線聯(lián)立結(jié)合拋物線的定義即可求解.【詳解】解:直線與拋物線相交于A,B兩點設(shè),直線與拋物線聯(lián)立得:所以所以即解得:所以拋物線C的準線方程為:.故答案為:.15、【解析】直接利用均值不等式得到答案.【詳解】,當即時等號成立.故答案為【點睛】本題考查了均值不等式,意在考查學(xué)生的計算能力.16、2π【解析】由圓錐的側(cè)面積公式即可求解【詳解】由題意,圓錐底面周長為2π×1=2π,又母線長為2,所以圓錐的側(cè)面積故答案為:2π.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)相交.(2)或.【解析】(1)先判斷出直線恒過定點(2,1),由(2,1)在圓內(nèi),即可判斷;(2)分斜率存在與不存在兩種情況,利用幾何法求解.【小問1詳解】直線方程,即,則直線恒過定點(2,1).因為,則點(2,1)位于圓的內(nèi)部,故直線與圓相交.【小問2詳解】直線斜率不存在時,直線滿足題意;②直線斜率存在的時候,設(shè)直線方程為,即.因為直線與圓相切,所以圓心到直線的距離等于半徑,即,解得:,則直線方程為:.綜上可得,直線方程或.18、(1);(2)1400(元).【解析】(1)根據(jù)已知條件即可容易求得函數(shù)關(guān)系式;(2)根據(jù)(1)中所求函數(shù)關(guān)系式,令,求得函數(shù)值即可.【小問1詳解】根據(jù)題意,得:當時,;當時,;當時,.即.【小問2詳解】因為,故,故該廠應(yīng)繳納污水處理費1400元.19、(1);詳見解析;(2)5.【解析】(1)由題可得,由條件可依次求各項,即得;猜想,用數(shù)學(xué)歸納法證明即得;(2)設(shè),由題可得,進而可得,結(jié)合條件即求.【小問1詳解】(i)∵,且,,,∴,,,∴,,,又,,,∴,∴,解得,,解得,,解得,,解得,∴;(ii)由,,,,猜想數(shù)列是首項,公差為的等差數(shù)列,,用數(shù)學(xué)歸納法證明:當時,,成立;假設(shè)時,等式成立,即,則時,,∴,∴當時,等式也成立,∴,∴數(shù)列是首項,公差為的等差數(shù)列.【小問2詳解】設(shè),由,,即,∴,又,,,∴,,,,,,∴,,,∴,又數(shù)列為遞增數(shù)列,∴,解得,由,∴,解得.【點睛】關(guān)鍵點點睛:第一問的關(guān)鍵是由條件猜想,然后數(shù)學(xué)歸納法證明,第二問求出,,即得.20、(1)(2)【解析】(1)由題意,求出的值,然后根據(jù)導(dǎo)數(shù)的幾何意義即可求解;(2)根據(jù)導(dǎo)數(shù)與函數(shù)單調(diào)性關(guān)系,判斷函數(shù)在區(qū)間上的單調(diào)性,從而即可求解.【小問1詳解】解:由題意,,因為,所以,解得,所以,,因為,,所以曲線在點處的切線方程為,即;【小問2詳解】解:因為,,所以時,,時,,所以在上單調(diào)遞減,在上單調(diào)遞增,所以,即函數(shù)在區(qū)間上的最小值為.21、(1)(2)證明見解析【解析】(1)根據(jù)作差即可得到是以為首項,為公比的等比數(shù)列,從而得到數(shù)列的通項公式;(2)由(1)可知,,根據(jù)等差數(shù)列的通項公式得到,即可得到,再令,利用錯位相減法求出,即可得證;【小問1詳解】解:因為,且,當時,則,所以,當時,,則,即,所以是以為首項,為公比的等比數(shù)列,所以;【小問2詳解】解:由(1)可知,,因為,所以,所以,令,則,所以,所以,即,所以,即;22、(1)(2)存在,,【解析】(1)利用離心率和橢圓所過點列出方程組,求出,求出橢圓方程;(2)假設(shè)存在,分切線斜率存在和不存在分類討論,根據(jù)向量數(shù)量積為0求出r的值,表達出△AOB的面積,利用基本不等式求出的取值范圍,進而求出△AOB面積的取值范圍.【小問1詳解】因為橢圓C:的離心率,且過點所以解得所以橢圓C的方程為【小問2詳解】假設(shè)存在⊙O:滿足題意,①切線方程l的斜率存在時,設(shè)切線方程l:y=kx+m與橢圓方程聯(lián)立,消去y得,(*)設(shè),,由題意知,(*)有兩解
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 托班食物健康課程設(shè)計
- 二零二五年度合伙人權(quán)益保障與分紅調(diào)整協(xié)議3篇
- 2024年版房產(chǎn)開發(fā)團隊勞動協(xié)議格式版B版
- 2025年度版權(quán)許可與版權(quán)交易合同(含網(wǎng)絡(luò)游戲)2篇
- 2024旅游地產(chǎn)開發(fā)轉(zhuǎn)讓合同
- 2025年度木托板產(chǎn)業(yè)鏈上下游戰(zhàn)略聯(lián)盟合同3篇
- 形象設(shè)計課程設(shè)計案例
- 二零二五年動遷安置房買賣合同范本6篇
- 2024版消防設(shè)備安裝工程承包預(yù)先合同版
- 二零二五年度古建筑地板打蠟與修復(fù)合同3篇
- 形容詞副詞(專項訓(xùn)練)-2023年中考英語二輪復(fù)習(xí)
- 2024人力行政年終總結(jié)
- 2024國家開放大學(xué)【法理學(xué)】形考試題及答案(二)
- GB 44495-2024汽車整車信息安全技術(shù)要求
- 《數(shù)學(xué)廣角——數(shù)與形》評課稿
- 瀝青路面施工監(jiān)理工作細則
- 物業(yè)設(shè)備設(shè)施系統(tǒng)介紹(詳細).ppt
- 公司走賬合同范本
- 獲獎一等獎QC課題PPT課件
- 人教版小學(xué)三年級數(shù)學(xué)上冊判斷題(共3頁)
- 國際項目管理手冊The Project Manager’s Manual
評論
0/150
提交評論