版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
四川省成都市龍泉第二中學2025屆數(shù)學高二上期末監(jiān)測試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知正三棱柱的側(cè)棱長與底面邊長相等,則AB1與側(cè)面ACC1A1所成角的正弦值等于A. B.C. D.2.已知直線與直線垂直,則()A. B.C. D.33.下列求導不正確的是()A B.C. D.4.等差數(shù)列中,,則前項的和()A. B.C. D.5.已知直線的一個方向向量為,則直線的傾斜角為()A. B.C. D.6.函數(shù)的單調(diào)遞減區(qū)間是()A. B.C. D.7.如圖,在空間四邊形OABC中,,,,點N為BC的中點,點M在線段OA上,且OM=2MA,則()A. B.C. D.8.點分別為橢圓左右兩個焦點,過的直線交橢圓與兩點,則的周長為()A.32 B.16C.8 D.49.函數(shù)的單調(diào)增區(qū)間為()A. B.C. D.10.已知直線經(jīng)過點,且是的方向向量,則點到的距離為()A. B.C. D.11.已知雙曲線C:(a>0,b>0),斜率為的直線與雙曲線交于不同的兩點,且線段的中點為P(2,4),則雙曲線的漸近線方程為()A. B.C. D.12.函數(shù)圖象的一個對稱中心為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.拋物線的焦點坐標為___________.14.記為等差數(shù)列的前n項和.若,則__________15.數(shù)學中有許多形狀優(yōu)美、寓意美好的曲線,曲線就是其中之一(如圖),給出下列三個結(jié)論:①曲線C恰好經(jīng)過6個整點(即橫、縱坐標均為整數(shù)的點);②曲線C上任意一點到原點的距離都不超過;③曲線C所圍成的“心形”區(qū)域的面積小于3;其中,所有正確結(jié)論的序號是________16.希臘著名數(shù)學家阿波羅尼斯與歐幾里得、阿基米德齊名.他發(fā)現(xiàn):“平面內(nèi)到兩個定點A,B的距離之比為定值λ(λ≠1)的點的軌跡是圓”.后來,人們將這個圓以他的名字命名,稱為阿波羅尼斯圓,簡稱阿氏圓.已知在平面直角坐標系xOy中,A(-2,1),B(-2,4),點P是滿足的阿氏圓上的任一點,則該阿氏圓的方程為___________________;若點Q為拋物線E:y2=4x上的動點,Q在直線x=-1上的射影為H,則的最小值為___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的一個焦點坐標為,離心率為(1)求橢圓C的標準方程;(2)O為坐標原點,點P在橢圓C上,若的面積為,求點P的坐標18.(12分)已知橢圓經(jīng)過點,左焦點為.(Ⅰ)求橢圓的方程;(Ⅱ)若是橢圓的右頂點,過點且斜率為的直線交橢圓于兩點,求的面積.19.(12分)已知函數(shù)(1)討論的單調(diào)性:(2)若對恒成立,求的取值范圍20.(12分)動點M到點的距離比它到直線的距離小,記M的軌跡為曲線C.(1)求C的方程;(2)已知圓,設P,A,B是C上不同的三點,若直線PA,PB均與圓D相切,若P的縱坐標為,求直線AB的方程.21.(12分)已知拋物線:的焦點為,點在上,點在的內(nèi)側(cè),且的最小值為.(1)求的方程;(2)為坐標原點,點A在y軸正半軸上,點B,C為E上兩個不同的點,其中B點在第四象限,且AB,互相垂直平分,求四邊形AOBC的面積.22.(10分)已知拋物線的焦點為,直線與拋物線交于,兩點,且(1)求拋物線的方程;(2)若,是拋物線上一點,過點的直線與拋物線交于,兩點(均與點不重合),設直線,的斜率分別為,,求證:為定值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】過作,連接,由于,故平面,所以所求直線與平面所成的角為,設棱長為,則,故,.點睛:本題主要考查空間立體幾何直線與平面的位置關系,考查直線與平面所成的角,考查線面垂直的證明方法和常見幾何體的結(jié)構特征.由于題目所給幾何體為直三棱柱,故側(cè)棱和底面垂直,這是一個重要的隱含條件,通過作交線的垂線,即可得到高,由此作出二面角的平面角.2、D【解析】先分別求出兩條直線的斜率,再利用兩直線垂直斜率之積為,即可求出.【詳解】由已知得直線與直線的斜率分別為、,∵直線與直線垂直,∴,解得,故選:.3、C【解析】由導數(shù)的運算法則、復合函數(shù)的求導法則計算后可判斷【詳解】A:;B:;C:;D:故選:C4、D【解析】利用等差數(shù)列下標和性質(zhì)可求得,根據(jù)等差數(shù)列求和公式可求得結(jié)果.【詳解】數(shù)列為等差數(shù)列,,解得:;.故選:D.5、A【解析】由直線斜率與方向向量的關系算出斜率,然后可得.【詳解】記直線的傾斜角為,由題知,又,所以,即.故選:A6、D【解析】求導后,利用求得函數(shù)的單調(diào)遞減區(qū)間.【詳解】解:,則,由得,故選:D.7、D【解析】利用空間向量的線性運算即可求解.【詳解】解:∵N為BC的中點,點M在線段OA上,且OM=2MA,且,,,故選:D.8、B【解析】由題意結(jié)合橢圓的定義可得,而的周長等于,從而可得答案【詳解】解:由得,由題意得,所以的周長等于,故選:B9、D【解析】先求定義域,再求導數(shù),令解不等式,即可.【詳解】函數(shù)的定義域為令,解得故選:D【點睛】本題考查利用導數(shù)研究函數(shù)的單調(diào)性,屬于中檔題.10、B【解析】求出,根據(jù)點到直線的距離的向量公式進行求解.【詳解】因為,為的一個方向向量,所以點到直線的距離.故選:B11、C【解析】設,代入雙曲線方程相減后可求得,從而得漸近線方程【詳解】設,則,相減得,∴,又線段的中點為P(2,4),的斜率為1,∴,,∴漸近線方程為故選:C【點睛】方法點睛:本題考查求雙曲線的漸近線方程,已知弦的中點(或涉及到中點),可設弦兩端點的坐標,代入雙曲線方程后作差,作差后式子中有直線的斜率,弦中點坐標,有.這種方法叫點差法12、D【解析】要求函數(shù)圖象的一個對稱中心的坐標,關鍵是求函數(shù)時的的值;令,根據(jù)余弦函數(shù)圖象性質(zhì)可得,此時可求出,然后對進行取值,進而結(jié)合選項即可得到答案.【詳解】解:令,則解得,即,圖象的對稱中心為,令,即可得到圖象的一個對稱中心為故選:D【點睛】本題考查三角函數(shù)的對稱中心,正弦函數(shù)的對稱中心為,余弦函數(shù)的對稱中心為.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】化成拋物線的標準方程即可.【詳解】由題意知,,則焦點坐標為.故答案為:14、【解析】因為是等差數(shù)列,根據(jù)已知條件,求出公差,根據(jù)等差數(shù)列前項和,即可求得答案.【詳解】是等差數(shù)列,且,設等差數(shù)列的公差根據(jù)等差數(shù)列通項公式:可得即:整理可得:解得:根據(jù)等差數(shù)列前項和公式:可得:.故答案:.【點睛】本題主要考查了求等差數(shù)列的前項和,解題關鍵是掌握等差數(shù)列的前項和公式,考查了分析能力和計算能力,屬于基礎題.15、①②【解析】先根據(jù)圖像的對稱性找出整點,再判斷是否還有其他的整點在曲線上;找出曲線上離原點距離最大的點的區(qū)域,再由基本不等式得到最大值不超過;在心形區(qū)域內(nèi)找到一個內(nèi)接多邊形,該多邊形的面積等于3,從而判斷出“心形”區(qū)域的面積大于3.【詳解】①:由于曲線,當時,;當時,;當時,;由于圖形的對稱性可知,沒有其他的整點在曲線上,故曲線恰好經(jīng)過6個整點:,,,,,,所以①正確;②:由圖知,到原點距離的最大值是在時,由基本不等式,當時,,所以即,所以②正確;③:由①知長方形CDFE的面積為2,三角形BCE的面積為1,所以曲線C所圍成的“心形”區(qū)域的面積大于3,故③錯誤;故答案為:①②.【點睛】找準圖形的關鍵信息,比如對稱性,整點,內(nèi)接多邊形是解決本題的關鍵.16、①.②.【解析】(1)利用直譯法直接求出P點的軌跡(2)先利用阿氏圓的定義將轉(zhuǎn)化為P點到另一個定點的距離,然后結(jié)合拋物線的定義容易求得的最小值【詳解】設P(x,y),由阿氏圓的定義可得即化簡得則設則由拋物線的定義可得當且僅當四點共線時取等號,的最小值為故答案為:【點睛】本題考查了拋物線的定義及幾何性質(zhì),同時考查了阿氏圓定義的應用.還考查了學生利用轉(zhuǎn)化思想、方程思想等思想方法解題的能力.難度較大三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)或或或【解析】(1)根據(jù)已知條件求得,由此求得橢圓的標準方程.(2)根據(jù)三角形的面積列方程,化簡求得點的坐標.【小問1詳解】設橢圓C的焦距為,由題意有,得,,故橢圓C的標準方程為;【小問2詳解】設點P的坐標為,由的面積為,有,得,有,得,故點P的坐標為或或或18、(Ⅰ);(Ⅱ).【解析】(Ⅰ)由橢圓的定義求出的值,由求出,代入,得到橢圓的方程;(Ⅱ)由點斜式求出直線的方程,設,聯(lián)立直線與橢圓方程,求出的值,再算出的面積試題解析(Ⅰ)由橢圓的定義得:又,故,∴橢圓的方程為:.(Ⅱ)過的直線方程為,,聯(lián)立,設,則,∴的面積.點睛:本題主要考查了求橢圓的方程,直線與橢圓相交時弦長的計算等,屬于中檔題.在(Ⅱ)中,注意的面積的計算公式19、(1)答案不唯一,具體見解析(2)【解析】(1)求導得,在分,兩種情況討論求解即可;(2)根據(jù)題意將問題轉(zhuǎn)化為對恒成立,進而構造函數(shù),求解函數(shù)最值即可.【小問1詳解】解:函數(shù)的定義域為,當時,令,得,令,得;當時,令,得,令,得綜上,當時,在上單調(diào)遞減,在上單調(diào)遞增;當時,在上單調(diào)遞增,在上單調(diào)遞減【小問2詳解】解:由(1)知,函數(shù)在上單調(diào)遞增,則,所以對恒成立等價于對恒成立設函數(shù),則,設,則,則在上單調(diào)遞減,所以,則,所以在上單調(diào)遞減,所以;故,即的取值范圍是20、(1)(2)【解析】(1)由拋物線的定義可得結(jié)論;(2)設,得PA的兩點式方程為,由在拋物線上,化簡直線方程為,然后由圓心到切線的距離等于半徑得出的關系式,并利用得出點滿足的等式,同理設得方程,最后由直線方程的定義可得直線方程【小問1詳解】由題意得動點M到點的距離等于到直線的距離,所以曲線C是以為焦點,為準線的拋物線.設,則,于是C的方程為.【小問2詳解】由(1)可知,設,PA的兩點式方程為.由,,可得.因為PA與D相切,所以,整理得.因為,可得.設,同理可得于是直線AB的方程為.21、(1)(2)【解析】(1)根據(jù)題意,結(jié)合拋物線定義,可求得,即得拋物線方程;(2)由題意推出四邊形AOBC是菱形.,設,根據(jù)拋物線的對稱性,可表示出B,C的坐標,從而利用向量的坐標運算,求得所設參數(shù)值,進而求得答案.【小問1詳解】的準線為:,作于R,根據(jù)拋物線的定義有,所以,因為在的內(nèi)側(cè),所以當P,Q,R三點共線時,取得最小值,此時,解得,所以的方程為.小問2詳解】因為AB,OC互相垂直平分,所以四邊形AOBC是菱形.由,得軸,設點,則,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 請家庭保姆合同模板
- 報廢火車翻新改造合同模板
- 簡易 企業(yè)租房合同模板
- 電梯訂購和安裝合同模板
- 手機抵押合同模板
- 衛(wèi)生費合同模板
- 醫(yī)院項目施工合同模板
- 營地地基租賃合同模板
- 店鋪雨傘租賃合同模板
- 窗口生意轉(zhuǎn)讓合同模板
- 2024年4月自考00160審計學試題及答案含評分標準
- MOOC 國際商務-暨南大學 中國大學慕課答案
- “結(jié)構化教學”視域下的小學數(shù)學復習課設計 論文
- 頸椎病的治療
- 人教版數(shù)學三年級上冊《1-4單元綜合復習》試題
- 空調(diào)水系統(tǒng)管道冷量、流量及管徑計算方法和選取表
- 皮下氣腫護理查房
- 西方經(jīng)濟學 課件 10 失業(yè)與通貨膨脹理論
- 快速康復外科在泌尿外科患者圍手術期護理中的應用進展
- 婦科護理宮頸炎盆腔炎的護理
- 第6課《求助電話》課件
評論
0/150
提交評論