內蒙古巴彥淖爾市臨河區(qū)2023-2024學年中考數(shù)學猜題卷含解析_第1頁
內蒙古巴彥淖爾市臨河區(qū)2023-2024學年中考數(shù)學猜題卷含解析_第2頁
內蒙古巴彥淖爾市臨河區(qū)2023-2024學年中考數(shù)學猜題卷含解析_第3頁
內蒙古巴彥淖爾市臨河區(qū)2023-2024學年中考數(shù)學猜題卷含解析_第4頁
內蒙古巴彥淖爾市臨河區(qū)2023-2024學年中考數(shù)學猜題卷含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

內蒙古巴彥淖爾市臨河區(qū)2023-2024學年中考數(shù)學猜題卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(共10小題,每小題3分,共30分)1.如圖,在△ABC中,BC=8,AB的中垂線交BC于D,AC的中垂線交BC于E,則△ADE的周長等于()A.8 B.4 C.12 D.162.在直角坐標系中,我們把橫、縱坐標都為整數(shù)的點叫做整點.對于一條直線,當它與一個圓的公共點都是整點時,我們把這條直線稱為這個圓的“整點直線”.已知⊙O是以原點為圓心,半徑為圓,則⊙O的“整點直線”共有()條A.7 B.8 C.9 D.103.如圖,半⊙O的半徑為2,點P是⊙O直徑AB延長線上的一點,PT切⊙O于點T,M是OP的中點,射線TM與半⊙O交于點C.若∠P=20°,則圖中陰影部分的面積為()A.1+ B.1+C.2sin20°+ D.4.一個幾何體的三視圖如圖所示,根據圖示的數(shù)據計算出該幾何體的表面積()A.65π B.90π C.25π D.85π5.我國古代數(shù)學名著《孫子算經》中記載了一道題,大意是:100匹馬恰好拉了100片瓦,已知1匹大馬能拉3片瓦,3匹小馬能拉1片瓦,問有多少匹大馬、多少匹小馬?若設大馬有匹,小馬有匹,則可列方程組為()A. B.C. D.6.如圖,把長方形紙片ABCD折疊,使頂點A與頂點C重合在一起,EF為折痕.若AB=9,BC=3,試求以折痕EF為邊長的正方形面積()A.11 B.10 C.9 D.167.“a是實數(shù),”這一事件是()A.不可能事件 B.不確定事件 C.隨機事件 D.必然事件8.某大學生利用課余時間在網上銷售一種成本為50元/件的商品,每月的銷售量y(件)與銷售單價x(元/件)之間的函數(shù)關系式為y=–4x+440,要獲得最大利潤,該商品的售價應定為A.60元B.70元C.80元D.90元9.下列事件是確定事件的是()A.陰天一定會下雨B.黑暗中從5把不同的鑰匙中隨意摸出一把,用它打開了門C.打開電視機,任選一個頻道,屏幕上正在播放新聞聯(lián)播D.在五個抽屜中任意放入6本書,則至少有一個抽屜里有兩本書10.將2001×1999變形正確的是()A.20002﹣1 B.20002+1 C.20002+2×2000+1 D.20002﹣2×2000+1二、填空題(本大題共6個小題,每小題3分,共18分)11.若一個正n邊形的每個內角為144°,則這個正n邊形的所有對角線的條數(shù)是_________.12.已知一組數(shù)據-3,x,-2,3,1,6的眾數(shù)為3,則這組數(shù)據的中位數(shù)為______.13.如圖,將量角器和含30°角的一塊直角三角板緊靠著放在同一平面內,使三角板的0cm刻度線與量角器的0°線在同一直線上,且直徑DC是直角邊BC的兩倍,過點A作量角器圓弧所在圓的切線,切點為E,則點E在量角器上所對應的度數(shù)是____.14.如下圖,在直徑AB的半圓O中,弦AC、BD相交于點E,EC=2,BE=1.則cos∠BEC=________.15.比較大?。篲____1.16.若分式a2-9a+3三、解答題(共8題,共72分)17.(8分)已知:如圖所示,在中,,,求和的度數(shù).18.(8分)有A,B兩個黑布袋,A布袋中有兩個完全相同的小球,分別標有數(shù)字1和1.B布袋中有三個完全相同的小球,分別標有數(shù)字﹣1,﹣1和﹣2.小明從A布袋中隨機取出一個小球,記錄其標有的數(shù)字為x,再從B布袋中隨機取出一個小球,記錄其標有的數(shù)字為y,這樣就確定點Q的一個坐標為(x,y).(1)用列表或畫樹狀圖的方法寫出點Q的所有可能坐標;(1)求點Q落在直線y=﹣x﹣1上的概率.19.(8分)某校組織了一次初三科技小制作比賽,有A.B.C,D四個班共提供了100件參賽作品.C班提供的參賽作品的獲獎率為50%,其他幾個班的參賽作品情況及獲獎情況繪制在下列圖l和圖2兩幅尚不完整的統(tǒng)計圖中.(1)B班參賽作品有多少件?(2)請你將圖②的統(tǒng)計圖補充完整;(3)通過計算說明,哪個班的獲獎率高?(4)將寫有A,B,C,D四個字母的完全相同的卡片放入箱中,從中一次隨機抽出兩張卡片,求抽到A,B兩班的概率.20.(8分)某食品廠生產一種半成品食材,產量百千克與銷售價格元千克滿足函數(shù)關系式,從市場反饋的信息發(fā)現(xiàn),該半成品食材的市場需求量百千克與銷售價格元千克滿足一次函數(shù)關系,如下表:銷售價格元千克2410市場需求量百千克12104已知按物價部門規(guī)定銷售價格x不低于2元千克且不高于10元千克求q與x的函數(shù)關系式;當產量小于或等于市場需求量時,這種半成品食材能全部售出,求此時x的取值范圍;當產量大于市場需求量時,只能售出符合市場需求量的半成品食材,剩余的食材由于保質期短而只能廢棄若該半成品食材的成本是2元千克.求廠家獲得的利潤百元與銷售價格x的函數(shù)關系式;當廠家獲得的利潤百元隨銷售價格x的上漲而增加時,直接寫出x的取值范圍利潤售價成本21.(8分)(1)計算:2﹣2﹣+(1﹣)0+2sin60°.(2)先化簡,再求值:()÷,其中x=﹣1.22.(10分)如圖,已知正比例函數(shù)y=2x和反比例函數(shù)的圖象交于點A(m,﹣2).求反比例函數(shù)的解析式;觀察圖象,直接寫出正比例函數(shù)值大于反比例函數(shù)值時自變量x的取值范圍;若雙曲線上點C(2,n)沿OA方向平移個單位長度得到點B,判斷四邊形OABC的形狀并證明你的結論.23.(12分)已知點E為正方形ABCD的邊AD上一點,連接BE,過點C作CN⊥BE,垂足為M,交AB于點N.(1)求證:△ABE≌△BCN;(2)若N為AB的中點,求tan∠ABE.24.已知:如圖,四邊形ABCD的對角線AC和BD相交于點E,AD=DC,DC2=DE?DB,求證:(1)△BCE∽△ADE;(2)AB?BC=BD?BE.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】

∵AB的中垂線交BC于D,AC的中垂線交BC于E,∴DA=DB,EA=EC,則△ADE的周長=AD+DE+AE=BD+DE+EC=BC=8,故選A.2、D【解析】試題分析:根據圓的半徑可知:在圓上的整數(shù)點為(2,2)、(2,-2),(-2,-2),(-2,2)這四個點,經過任意兩點的“整點直線”有6條,經過其中的任意一點且圓相切的“整點直線”有4條,則合計共有10條.3、A【解析】

連接OT、OC,可求得∠COM=30°,作CH⊥AP,垂足為H,則CH=1,于是,S陰影=S△AOC+S扇形OCB,代入可得結論.【詳解】連接OT、OC,∵PT切⊙O于點T,∴∠OTP=90°,∵∠P=20°,∴∠POT=70°,∵M是OP的中點,∴TM=OM=PM,∴∠MTO=∠POT=70°,∵OT=OC,∴∠MTO=∠OCT=70°,∴∠OCT=180°-2×70°=40°,∴∠COM=30°,作CH⊥AP,垂足為H,則CH=OC=1,S陰影=S△AOC+S扇形OCB=OA?CH+=1+,故選A.【點睛】本題考查了切線的性質:圓的切線垂直于經過切點的半徑.運用切線的性質來進行計算或論證,常通過作輔助線連接圓心和切點,利用垂直構造直角三角形解決有關問題.也考查了等腰三角形的判定與性質和含30度的直角三角形三邊的關系.4、B【解析】

根據三視圖可判斷該幾何體是圓錐,圓錐的高為12,圓錐的底面圓的半徑為5,再利用勾股定理計算出母線長,然后求底面積與側面積的和即可.【詳解】由三視圖可知該幾何體是圓錐,圓錐的高為12,圓錐的底面圓的半徑為5,所以圓錐的母線長==13,所以圓錐的表面積=π×52+×2π×5×13=90π.故選B.【點睛】本題考查了圓錐的計算:圓錐的側面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長,扇形的半徑等于圓錐的母線長.也考查了三視圖.5、B【解析】

設大馬有匹,小馬有匹,根據題意可得等量關系:大馬數(shù)+小馬數(shù)=100,大馬拉瓦數(shù)+小馬拉瓦數(shù)=100,根據等量關系列出方程即可.【詳解】解:設大馬有匹,小馬有匹,由題意得:,故選:B.【點睛】本題主要考查的是由實際問題抽象出二元一次方程組,關鍵是正確理解題意,找出題目中的等量關系,列出方程組.6、B【解析】

根據矩形和折疊性質可得△EHC≌△FBC,從而可得BF=HE=DE,設BF=EH=DE=x,則AF=CF=9﹣x,在Rt△BCF中,由BF2+BC2=CF2可得BF=DE=AG=4,據此得出GF=1,由EF2=EG2+GF2可得答案.【詳解】如圖,∵四邊形ABCD是矩形,∴AD=BC,∠D=∠B=90°,根據折疊的性質,有HC=AD,∠H=∠D,HE=DE,∴HC=BC,∠H=∠B,又∠HCE+∠ECF=90°,∠BCF+∠ECF=90°,∴∠HCE=∠BCF,在△EHC和△FBC中,∵,∴△EHC≌△FBC,∴BF=HE,∴BF=HE=DE,設BF=EH=DE=x,則AF=CF=9﹣x,在Rt△BCF中,由BF2+BC2=CF2可得x2+32=(9﹣x)2,解得:x=4,即DE=EH=BF=4,則AG=DE=EH=BF=4,∴GF=AB﹣AG﹣BF=9﹣4﹣4=1,∴EF2=EG2+GF2=32+12=10,故選B.【點睛】本題考查了折疊的性質、矩形的性質、三角形全等的判定與性質、勾股定理等,綜合性較強,熟練掌握各相關的性質定理與判定定理是解題的關鍵.7、D【解析】是實數(shù),||一定大于等于0,是必然事件,故選D.8、C【解析】設銷售該商品每月所獲總利潤為w,則w=(x–50)(–4x+440)=–4x2+640x–22000=–4(x–80)2+3600,∴當x=80時,w取得最大值,最大值為3600,即售價為80元/件時,銷售該商品所獲利潤最大,故選C.9、D【解析】試題分析:找到一定發(fā)生或一定不發(fā)生的事件即可.A、陰天一定會下雨,是隨機事件;B、黑暗中從5把不同的鑰匙中隨意摸出一把,用它打開了門,是隨機事件;C、打開電視機,任選一個頻道,屏幕上正在播放新聞聯(lián)播,是隨機事件;D、在學校操場上向上拋出的籃球一定會下落,是必然事件.故選D.考點:隨機事件.10、A【解析】

原式變形后,利用平方差公式計算即可得出答案.【詳解】解:原式=(2000+1)×(2000-1)=20002-1,故選A.【點睛】此題考查了平方差公式,熟練掌握平方差公式是解本題的關鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、2【解析】

由正n邊形的每個內角為144°結合多邊形內角和公式,即可得出關于n的一元一次方程,解方程即可求出n的值,將其代入中即可得出結論.【詳解】∵一個正n邊形的每個內角為144°,

∴144n=180×(n-2),解得:n=1.

這個正n邊形的所有對角線的條數(shù)是:==2.

故答案為2.【點睛】本題考查了多邊形的內角以及多邊形的對角線,解題的關鍵是求出正n邊形的邊數(shù).本題屬于基礎題,難度不大,解決該題型題目時,根據多邊形的內角和公式求出多邊形邊的條數(shù)是關鍵.12、【解析】分析:找中位數(shù)要把數(shù)據按從小到大的順序排列,位于最中間的一個數(shù)(或兩個數(shù)的平均數(shù))為中位數(shù);眾數(shù)是一組數(shù)據中出現(xiàn)次數(shù)最多的數(shù)據,注意眾數(shù)可以不只一個.

詳解:∵-3,x,-1,3,1,6的眾數(shù)是3,

∴x=3,

先對這組數(shù)據按從小到大的順序重新排序-3、-1、1、3、3、6位于最中間的數(shù)是1,3,

∴這組數(shù)的中位數(shù)是=1.

故答案為:1.點睛:本題屬于基礎題,考查了確定一組數(shù)據的中位數(shù)和眾數(shù)的能力.一些學生往往對這個概念掌握不清楚,計算方法不明確而誤選其它選項,注意找中位數(shù)的時候一定要先排好順序,然后再根據奇數(shù)和偶數(shù)個來確定中位數(shù),如果數(shù)據有奇數(shù)個,則正中間的數(shù)字即為所求,如果是偶數(shù)個則找中間兩位數(shù)的平均數(shù).13、60.【解析】

首先設半圓的圓心為O,連接OE,OA,由題意易得AC是線段OB的垂直平分線,即可求得∠AOC=∠ABC=60°,又由AE是切線,易證得Rt△AOE≌Rt△AOC,繼而求得∠AOE的度數(shù),則可求得答案.【詳解】設半圓的圓心為O,連接OE,OA,∵CD=2OC=2BC,∴OC=BC,∵∠ACB=90°,即AC⊥OB,∴OA=BA,∴∠AOC=∠ABC,∵∠BAC=30°,∴∠AOC=∠ABC=60°,∵AE是切線,∴∠AEO=90°,∴∠AEO=∠ACO=90°,∵在Rt△AOE和Rt△AOC中,,∴Rt△AOE≌Rt△AOC(HL),∴∠AOE=∠AOC=60°,∴∠EOD=180°﹣∠AOE﹣∠AOC=60°,∴點E所對應的量角器上的刻度數(shù)是60°,故答案為:60.【點睛】本題考查了切線的性質、全等三角形的判定與性質以及垂直平分線的性質,解題的關鍵是掌握輔助線的作法,注意掌握數(shù)形結合思想的應用.14、【解析】分析:連接BC,則∠BCE=90°,由余弦的定義求解.詳解:連接BC,根據圓周角定理得,∠BCE=90°,所以cos∠BEC=.故答案為.點睛:本題考查了圓周角定理的余弦的定義,求一個銳角的余弦時,需要把這個銳角放到直角三角形中,再根據余弦的定義求解,而圓中直徑所對的圓周角是直角.15、【解析】

先將1化為根號的形式,根據被開方數(shù)越大值越大即可求解.【詳解】解:,,,故答案為>.【點睛】本題考查實數(shù)大小的比較,比較大小時,常用的方法有:作差法,作商法,如果有一個是二次根式,要把另一個也化為二次根式的形式,根據被開方數(shù)的大小進行比較.16、1.【解析】試題分析:根據分式的值為0的條件列出關于a的不等式組,求出a的值即可.試題解析:∵分式a2∴a2解得a=1.考點:分式的值為零的條件.三、解答題(共8題,共72分)17、,.【解析】

根據等腰三角形的性質即可求出∠B,再根據三角形外角定理即可求出∠C.【詳解】在中,,∵,在三角形中,,又∵,在三角形中,∴.【點睛】此題主要考查等腰三角形的性質,解題的關鍵是熟知等邊對等角.18、(1)見解析;(1)【解析】試題分析:先用列表法寫出點Q的所有可能坐標,再根據概率公式求解即可.(1)由題意得

1

1

-1

(1,-1)

(1,-1)

-1

(1,-1)

(1,-1)

-2

(1,-2)

(1,-2)

(1)共有6種等可能情況,符合條件的有1種P(點Q在直線y=?x?1上)=.考點:概率公式點評:解題的關鍵是熟練掌握概率公式:概率=所求情況數(shù)與總情況數(shù)的比值.19、(1)25件;(2)見解析;(3)B班的獲獎率高;(4)16【解析】試題分析:(1)直接利用扇形統(tǒng)計圖中百分數(shù),進而求出B班參賽作品數(shù)量;(2)利用C班提供的參賽作品的獲獎率為50%,結合C班參賽數(shù)量得出獲獎數(shù)量;(3)分別求出各班的獲獎百分率,進而求出答案;(4)利用樹狀統(tǒng)計圖得出所有符合題意的答案進而求出其概率.試題解析:(1)由題意可得:100×(1﹣35%﹣20%﹣20%)=25(件),答:B班參賽作品有25件;(2)∵C班提供的參賽作品的獲獎率為50%,∴C班的參賽作品的獲獎數(shù)量為:100×20%×50%=10(件),如圖所示:;(3)A班的獲獎率為:14100×35%×100%=40%,B班的獲獎率為:11C班的獲獎率為:1020=50%;D班的獲獎率為:8故C班的獲獎率高;(4)如圖所示:,故一共有12種情況,符合題意的有2種情況,則從中一次隨機抽出兩張卡片,求抽到A、B兩班的概率為:212=1考點:1.列表法與樹狀圖法;2.扇形統(tǒng)計圖;3.條形統(tǒng)計圖.20、(1);(2);(3);當時,廠家獲得的利潤y隨銷售價格x的上漲而增加.【解析】

(1)直接利用待定系數(shù)法求出一次函數(shù)解析式進而得出答案;(2)由題意可得:p≤q,進而得出x的取值范圍;(3)①利用頂點式求出函數(shù)最值得出答案;②利用二次函數(shù)的增減性得出答案即可.【詳解】(1)設q=kx+b(k,b為常數(shù)且k≠0),當x=2時,q=12,當x=4時,q=10,代入解析式得:,解得:,∴q與x的函數(shù)關系式為:q=﹣x+14;(2)當產量小于或等于市場需求量時,有p≤q,∴x+8≤﹣x+14,解得:x≤4,又2≤x≤10,∴2≤x≤4;(3)①當產量大于市場需求量時,可得4<x≤10,由題意得:廠家獲得的利潤是:y=qx﹣2p=﹣x2+13x﹣16=﹣(x)2;②∵當x時,y隨x的增加而增加.又∵產量大于市場需求量時,有4<x≤10,∴當4<x時,廠家獲得的利潤y隨銷售價格x的上漲而增加.【點睛】本題考查了待定系數(shù)法求一次函數(shù)解析式以及二次函數(shù)最值求法等知識,正確得出二次函數(shù)解析式是解題的關鍵.21、(1)(2)【解析】

(1)根據負整數(shù)指數(shù)冪、二次根式、零指數(shù)冪和特殊角的三角函數(shù)值可以解答本題;(2)根據分式的減法和除法可以化簡題目中的式子,然后將x的值代入化簡后的式子即可解答本題.【詳解】解:(1)原式=﹣+1+2=﹣+1+=﹣;(2)原式====,當x=﹣1時,原式==.【點睛】本題考查分式的化簡求值、絕對值、零指數(shù)冪、負整數(shù)指數(shù)冪和特殊角的三角函數(shù)值,解答本題的關鍵是明確它們各自的計算方法.22、(1)(2)﹣1<x<0或x>1.(3)四邊形OABC是平行四邊形;理由見解析.【解析】

(1)設反比例函數(shù)的解析式為(k>0),然后根據條件求出A點坐標,再求出k的值,進而求出反比例函數(shù)的解析式.(2)直接由圖象得出正比例函數(shù)值大于反比例函數(shù)值時自變量x的取值范圍;(3)首先求出OA的長度,結合題意CB∥OA且CB=,判斷出四邊形OABC是平行四邊形,再證明OA=OC【詳解】解:(1)設反比例函數(shù)的解析式為(k>0)∵A(m,﹣2)在y=2x上,∴﹣2=2m,∴解得m=﹣1.∴A(﹣1,﹣2).又∵點A在上,∴,解得k=2.,∴反比例函數(shù)的解析式為.(2)觀察圖象可知正比例函數(shù)值大于反比例函數(shù)值時自變量x的取值范圍為﹣1<x<0或x>1.(3)四邊形OABC是菱形.證明如下:∵A(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論