版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2025屆三門峽市重點中學高二上數(shù)學期末達標檢測試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.拋物線的焦點到準線的距離為()A. B.C. D.12.已知在直角坐標系xOy中,點Q(4,0),O為坐標原點,直線l:上存在點P滿足.則實數(shù)m的取值范圍是()A. B.C. D.3.已知橢圓,則它的短軸長為()A.2 B.4C.6 D.84.如圖所示,在三棱錐中,E,F(xiàn)分別是AB,BC的中點,則等于()A. B.C. D.5.我國古代的數(shù)學名著《九章算術(shù)》中有“衰分問題”:今有女子善織,日自倍,五日織五尺,問次日織幾問?其意為:一女子每天織布的尺數(shù)是前一天的2倍,5天共織布5尺,請問第二天織布的尺數(shù)是()A. B.C. D.6.等差數(shù)列的前項和,若,則A.8 B.10C.12 D.147.已知橢圓的左、右焦點分別為、,點在橢圓上,若,則的面積為()A. B.C. D.8.如圖,已知正方體,點P是棱中點,設(shè)直線為a,直線為b.對于下列兩個命題:①過點P有且只有一條直線l與a、b都相交;②過點P有且只有兩條直線l與a、b都成角.以下判斷正確的是()A.①為真命題,②為真命題 B.①為真命題,②為假命題C.①為假命題,②為真命題 D.①為假命題,②為假命題9.一條光線從點射出,經(jīng)軸反射后與圓相切,則反射光線所在直線的斜率為()A.或 B.或C.或 D.或10.已知函數(shù),若對任意兩個不等的正數(shù),,都有恒成立,則a的取值范圍為()A. B.C. D.11.由直線上的點向圓引切線,則切線長的最小值為()A. B.C.4 D.212.設(shè)函數(shù)若函數(shù)有兩個零點,則實數(shù)m的取值范圍是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知等差數(shù)列滿足,,,則公差______14.已知函數(shù),若,則________.15.若斜率為的直線與橢圓交于,兩點,且的中點坐標為,則___________.16.在中,,是線段上的點,,若的面積為,當取到最大值時,___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知點F是拋物線和橢圓的公共焦點,是與的交點,.(1)求橢圓的方程;(2)直線與拋物線相切于點,與橢圓交于,,點關(guān)于軸的對稱點為.求的最大值及相應的.18.(12分)已知直線,拋物線.(1)與有公共點,求的取值范圍;(2)是坐標原點,過的焦點且與交于兩點,求的面積.19.(12分)在①,②是與的等比中項,③這三個條件中任選一個,補充在下面的問題中,并解答問題:已知數(shù)列{}的前n項和為,,且滿足___(1)求數(shù)列{}的通項公式;(2)求數(shù)列{}前n項和注:如果選擇多個條件分別解答,按第一個解答計分20.(12分)已知函數(shù).(1)設(shè)函數(shù),討論在區(qū)間上的單調(diào)性;(2)若存在兩個極值點,()(極值點是指函數(shù)取極值時對應的自變量的值),且,證明:.21.(12分)已知P,Q的坐標分別為,,直線PM,QM相交于點M,且它們的斜率之積是.設(shè)點M的軌跡為曲線C.(1)求曲線的方程;(2)設(shè)為坐標原點,圓的半徑為1,直線:與圓相切,且與曲線交于不同的兩點A,B.當,且滿足時,求面積的取值范圍.22.(10分)已知等差數(shù)列滿足;正項等比數(shù)列滿足,,(1)求數(shù)列,的通項公式;(2)數(shù)列滿足,的前n項和為,求的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】由可得拋物線標椎方程為:,由焦點和準線方程即可得解.【詳解】由可得拋物線標準方程為:,所以拋物線的焦點為,準線方程為,所以焦點到準線的距離為,故選:B【點睛】本題考了拋物線標準方程,考查了焦點和準線相關(guān)基本量,屬于基礎(chǔ)題.2、A【解析】根據(jù)給定直線設(shè)出點P的坐標,再借助列出關(guān)于的不等式,然后由不等式有解即可計算作答.【詳解】因點P在直線l:上,則設(shè),于是有,而,因此,,即,依題意,上述關(guān)于的一元二次不等式有實數(shù)解,從而有,解得,所以實數(shù)m的取值范圍是.故選:A3、B【解析】根據(jù)橢圓短軸長的定義進行求解即可.【詳解】由橢圓的標準方程可知:,所以該橢圓的短軸長為,故選:B4、D【解析】根據(jù)向量的線性運算公式化簡可得結(jié)果.【詳解】因為E,F(xiàn)分別是AB,AC的中點,所以,,所以,故選:D5、C【解析】根據(jù)等比數(shù)列求和公式求出首項即可得解.【詳解】由題可得該女子每天織布的尺數(shù)成等比數(shù)列,設(shè)其首項為,公比為,則,解得所以第二天織布的尺數(shù)為.故選:C6、C【解析】假設(shè)公差為,依題意可得.所以.故選C.考點:等差數(shù)列的性質(zhì).7、B【解析】求出,可知為等腰三角形,取的中點,可得出,利用勾股定理求得,利用三角形的面積公式可求得結(jié)果.【詳解】在橢圓中,,,則,所以,,由橢圓的定義可得,取的中點,因為,則,由勾股定理可得,所以,.故選:B.8、A【解析】①由正方形的性質(zhì),可以延伸正方形,再利用兩條平行線確定一個平面即可;②一組鄰邊與對角面夾角相等,在平面內(nèi)繞P轉(zhuǎn)動,可以得到二條直線與a、b的夾角都等于.【詳解】如下圖所示,在側(cè)面正方形和再延伸一個正方形和,則平面和在同一個平面內(nèi),所以過點P,有且只有一條直線l,即與a、b相交,故①為真命題;取中點N,連PN,由于a、b為異面直線,a、b的夾角等于與b的夾角.由于平面,平面,,所以平面,所以與與b的夾角都為.又因為平面,所以與與b的夾角都為,而,所以過點P,在平面內(nèi)存在一條直線,使得與與b的夾角都為,同理可得,過點P,在平面內(nèi)存在一條直線,使得與與的夾角都為;故②為真命題.故選:A9、D【解析】由光的反射原理知,反射光線的反向延長線必過點,設(shè)反射光線所在直線的斜率為,則反射光線所在直線方程為:,即:.又因為光線與圓相切,所以,,整理:,解得:,或,故選D考點:1、圓的標準方程;2、直線的方程;3、直線與圓的位置關(guān)系.10、A【解析】將已知條件轉(zhuǎn)化為時恒成立,利用參數(shù)分離的方法求出a的取值范圍【詳解】對任意都有恒成立,則時,,當時恒成立,
,當時恒成立,,故選:A11、D【解析】切點與圓心的連線垂直于切線,切線長轉(zhuǎn)化為直線上點與圓心連線和半徑的關(guān)系,利用點到直線的距離公式求出圓心與直線上點距離的最小值,結(jié)合勾股定理即可得出結(jié)果.【詳解】設(shè)為直線上任意一點,,切線長的最小值為:,故選:D.12、D【解析】有兩個零點等價于與的圖象有兩個交點,利用導數(shù)分析函數(shù)的單調(diào)性與最值,畫出函數(shù)圖象,數(shù)形結(jié)合可得結(jié)果.【詳解】解:設(shè),則,所以在上遞減,在上遞增,,且時,,有兩個零點等價于與的圖象有兩個交點,畫出的圖象,如下圖所示,由圖可得,時,與的圖象有兩個交點,此時,函數(shù)有兩個零點,實數(shù)m的取值范圍是,故選:D.【點睛】方法點睛:本題主要考查分段函數(shù)的性質(zhì)、利用導數(shù)研究函數(shù)的單調(diào)性、函數(shù)的零點,以及數(shù)形結(jié)合思想的應用,屬于難題.數(shù)形結(jié)合是根據(jù)數(shù)量與圖形之間的對應關(guān)系,通過數(shù)與形的相互轉(zhuǎn)化來解決數(shù)學問題的一種重要思想方法,函數(shù)圖象是函數(shù)的一種表達形式,它形象地揭示了函數(shù)的性質(zhì),為研究函數(shù)的數(shù)量關(guān)系提供了“形”的直觀性.歸納起來,圖象的應用常見的命題探究角度有:1、確定方程根的個數(shù);2、求參數(shù)的取值范圍;3、求不等式的解集;4、研究函數(shù)性質(zhì)二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】根據(jù)等差數(shù)列性質(zhì)求得,再根據(jù)題意列出相關(guān)的方程組,解得答案.【詳解】為等差數(shù)列,故由可得:,即,故,故,所以,解得,故答案為:214、【解析】求出導函數(shù),確定導函數(shù)奇函數(shù),然后可求值【詳解】由已知,它是奇函數(shù),∴故答案為:【點睛】本題考查導數(shù)的運算,考查函數(shù)的奇偶性,確定函數(shù)的奇偶性是解題關(guān)鍵15、-1【解析】根據(jù)給定條件設(shè)出點A,B的坐標,再借助“點差法”即可計算得解.【詳解】依題意,線段的中點在橢圓C內(nèi),設(shè),,由兩式相減得:,而,于是得,即,所以.故答案為:16、【解析】由三角形面積公式得出,設(shè),由可得出,利用基本不等式可求出的值,利用等號成立可得出、的值,再利用余弦利用可得出的值.【詳解】由題意可得,解得,設(shè),則,可得,由基本不等式可得,當且僅當時,取得最大值,,,由余弦定理得,解得.故答案為【點睛】本題考查余弦定理解三角形,同時也考查了三角形的面積公式以及利用基本不等式求最值,在利用基本不等式求最值時,需要結(jié)合已知條件得出定值條件,同時要注意等號成立的條件,考查分析問題和解決問題的能力,屬于中等題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2),.【解析】(1)根據(jù)題意可得,然后根據(jù),,計算可得,最后可得結(jié)果.(2)假設(shè)直線的方程為,根據(jù)與拋物線相切,可得,然后與橢圓聯(lián)立,計算,然后計算點到的距離,計算,利用函數(shù)性質(zhì)可得結(jié)果.【詳解】(1)由題意知:,.,得:,所以.所以的方程為.(2)設(shè)直線的方程為,則由,得得:所以直線的方程為.由,得得.又,所以點到的距離為..令,則,.此時,即【點睛】本題考查直線與圓錐曲線的綜合以及三角形面積問題,本題著重考查對問題分析能力以及計算能力,屬難題.18、(1);(2).【解析】(1)聯(lián)立直線l與拋物線C的方程消去x,借助判別式建立不等式求解作答.(2)利用(1)中信息求出點縱坐標差的絕對值即可計算作答.【小問1詳解】依題意,由消去x并整理得:,因與有公共點,則,解得:,所以的取值范圍是.【小問2詳解】拋物線的焦點,則,設(shè),由(1)知,,則,因此,,所以的面積.19、(1);(2).【解析】(1)選①,可得數(shù)列為等差數(shù)列,求出,由,可得數(shù)列的通項公式為選②是與的等比中項,可得,由,可得,從而利用累乘法求得數(shù)列的通項公式為選③,由,可得,則數(shù)列為等差數(shù)列,從而求出通項公式(2)由(1)知,求出,利用錯位相減求和法求出小問1詳解】選①.因為,,所以是首項為1,公差為1的等差數(shù)列則,從而當時,,經(jīng)檢驗,當時,也符合上式.所以選②.因為是與的等比中項所以,當時,,兩式相減得,整理得,所以,經(jīng)檢驗,也符合上式,所以選③.由題設(shè),得,兩式相減,得,整理,得,因為.所以,所以是首項為1,公差為2的等差數(shù)列,所以【小問2詳解】由(1)知,,所以,所以,則兩式相減,得,所以20、(1)答案見解析(2)證明見解析【解析】(1)由題意得,然后對其求導,再分,兩種情況討論導數(shù)的正負,從而可求出函數(shù)的單調(diào)區(qū)間,(2)由(1)結(jié)合零點存在性定理可得在和上各有一個零點,且是的兩個極值點,再將極值點代入導函數(shù)中化簡結(jié)合已知可得,,從而將要證的結(jié)論轉(zhuǎn)化為證,令,再次轉(zhuǎn)化為利用導數(shù)求的最小值大于零即可【小問1詳解】由,得,則,當時,在上單調(diào)遞增;當時,令.當時,單調(diào)遞增;當時,單調(diào)遞減.綜上,當時,的增區(qū)間為,無減區(qū)間當時,的增區(qū)間為,減區(qū)間為小問2詳解】由(1)知若存在兩個極值點,則,且,且注意到,所以在和上各有一個零點,且時,單調(diào)遞減;當時,單調(diào)遞增;當時,單調(diào)遞減.所以是的兩個極值點.,因為,所以,所以,所以,即,所以而,所以,所以,要證,即要證即要證:因為,所以所以,即要證:即要證:令,即要證:即要證:令當時,,所以在上單調(diào)增所以結(jié)論得證.【點睛】關(guān)鍵點點睛:此題考查導數(shù)的應用,考查利用求函數(shù)的單調(diào)區(qū)間,考查利用導數(shù)證明不等式,解題的關(guān)鍵是將兩個極值點代入導函數(shù)中化簡后,將問題轉(zhuǎn)化為證明成立,換元后構(gòu)造函數(shù),再利用導數(shù)證明,考查數(shù)學轉(zhuǎn)化思想和計算能力,屬于較難題21、(1)(2)【解析
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 單位管理制度集粹合集職工管理
- 2024版互聯(lián)網(wǎng)金融借貸服務(wù)合同
- 2024新能源研發(fā)合作合同
- 2024水電項目施工臨時用電安全管理分包合同3篇
- 2024年高精度地圖制作與使用合同
- 2023-2024學年八年級語文上學期期中考試模擬卷【解析版】
- 2024年返租投資合同
- 2024年規(guī)范化信息技術(shù)服務(wù)合同模板版B版
- 2024年藝術(shù)品借展與博物館展覽合作合同3篇
- 2024年軟件開發(fā)與定制服務(wù)合同詳細內(nèi)容
- 工程設(shè)計-《工程勘察設(shè)計收費標準》(2002年修訂本)-完整版
- 河南省鄭州市2023-2024學年高二上學期期末考試政治試題 附答案
- 福建省泉州市2022-2023學年高一上學期期末教學質(zhì)量監(jiān)測化學試題(含答案)
- 公司組織架構(gòu)圖(可編輯模版)
- (大潔王)化學品安全技術(shù)說明書
- 2022年科學道德與學術(shù)規(guī)范知識競賽決賽題庫(含答案)
- 市場調(diào)查與預測期末復習試題10套含答案
- 呼吸內(nèi)科國家臨床重點??平ㄔO(shè)項目評分標準試行
- 煤炭質(zhì)量分級及低位發(fā)熱量計算
- 臨床試驗樣本量簡易計算器
- 帶電作業(yè)車庫技術(shù)規(guī)范書
評論
0/150
提交評論