版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2025屆山東省淄博第十中學(xué)高二上數(shù)學(xué)期末學(xué)業(yè)水平測試模擬試題考生請(qǐng)注意:1.答題前請(qǐng)將考場、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.如圖①所示,將一邊長為1的正方形沿對(duì)角線折起,形成三棱錐,其主視圖與俯視圖如圖②所示,則左視圖的面積為()A. B.C. D.2.已知,且直線始終平分圓的周長,則的最小值是()A.2 B.C.6 D.163.設(shè)為空間中的四個(gè)不同點(diǎn),則“中有三點(diǎn)在同一條直線上”是“在同一個(gè)平面上”的()A.充分非必要條件 B.必要非充分條件C.充要條件 D.既非充分又非必要條件4.已知函數(shù),若在處取得極值,且恒成立,則實(shí)數(shù)的最大值為()A. B.C. D.5.不等式表示的平面區(qū)域是一個(gè)()A.三角形 B.直角三角形C.矩形 D.梯形6.已知點(diǎn)是雙曲線的左、右焦點(diǎn),以線段為直徑的圓與雙曲線在第一象限的交點(diǎn)為,若,則()A.與雙曲線的實(shí)軸長相等B.的面積為C.雙曲線的離心率為D.直線是雙曲線的一條漸近線7.已知數(shù)列滿足,則滿足的的最大取值為()A.6 B.7C.8 D.98.兩位同學(xué)課余玩一種類似于古代印度的“梵塔游戲”:有3個(gè)柱子甲、乙、丙,甲柱上有個(gè)盤子,最上面的兩個(gè)盤子大小相同,從第二個(gè)盤子往下大小不等,大的在下,小的在上(如圖).把這個(gè)盤子從甲柱全部移到乙柱游戲結(jié)束,在移動(dòng)的過程中每次只能移動(dòng)一個(gè)盤子,甲、乙、丙柱都可以利用,且3個(gè)柱子上的盤子始終保持小的盤子不能放在大的盤子之下.設(shè)游戲結(jié)束需要移動(dòng)的最少次數(shù)為,則當(dāng)時(shí),和滿足A. B.C. D.9.設(shè)雙曲線C:的左、右焦點(diǎn)分別為,點(diǎn)P在雙曲線C上,若線段的中點(diǎn)在y軸上,且為等腰三角形,則雙曲線C的離心率為()A B.2C. D.10.已知雙曲線的右焦點(diǎn)為F,雙曲線C的右支上有一點(diǎn)P滿是(點(diǎn)O為坐標(biāo)原點(diǎn)),那么雙曲線C的離心率為()A. B.C. D.11.若方程表示圓,則實(shí)數(shù)m的取值范圍為()A B.C. D.12.已知直線:與雙曲線的兩條漸近線分別相交于A、B兩點(diǎn),若C為直線與y軸的交點(diǎn),且,則k等于()A.4 B.6C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖,某建筑物的高度,一架無人機(jī)上的儀器觀測到建筑物頂部的仰角為,地面某處的俯角為,且,則此無人機(jī)距離地面的高度為________14.已知,,且,則的最小值為___________15.若拋物線上一點(diǎn)到軸的距離是4,則點(diǎn)到該拋物線焦點(diǎn)的距離是___________.16.若平面內(nèi)兩條直線,平行,則實(shí)數(shù)______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)討論的單調(diào)性;(2)任意,恒成立,求的取值范圍.18.(12分)如圖,圓錐的底面直徑與母線長均為4,PO是圓錐的高,點(diǎn)C是底面直徑AB所對(duì)弧的中點(diǎn),點(diǎn)D是母線PA的中點(diǎn)(1)求圓錐的表面積;(2)求點(diǎn)B到直線CD的距離19.(12分)已知橢圓的方程為,雙曲線的左、右焦點(diǎn)分別是的左、右頂點(diǎn),而的左、右頂點(diǎn)分別是的左、右焦點(diǎn)(1)求雙曲線的方程;(2)若直線與雙曲線恒有兩個(gè)不同的交點(diǎn)和,且(其中為原點(diǎn)),求的取值范圍20.(12分)已知函數(shù)在處的切線與軸平行(1)求的值;(2)判斷在上零點(diǎn)的個(gè)數(shù),并說明理由21.(12分)已知拋物線的方程為,點(diǎn),過點(diǎn)的直線交拋物線于,兩點(diǎn)(1)是否為定值?若是,求出該定值;若不是,說明理由;(2)若點(diǎn)是直線上的動(dòng)點(diǎn),且,求面積的最小值22.(10分)已知橢圓的長軸長是,以其短軸為直徑的圓過橢圓的左右焦點(diǎn),.(1)求橢圓E的方程;(2)過橢圓E左焦點(diǎn)作不與坐標(biāo)軸垂直的直線,交橢圓于M,N兩點(diǎn),線段MN的垂直平分線與y軸負(fù)半軸交于點(diǎn)Q,若點(diǎn)Q的縱坐標(biāo)的最大值是,求面積的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】由視圖確定該幾何體的特征,即可得解.【詳解】由主視圖可以看出,A點(diǎn)在面上的投影為的中點(diǎn),由俯視圖可以看出C點(diǎn)在面上的投影為的中點(diǎn),所以其左視圖為如圖所示的等腰直角三角形,直角邊長為,于是左視圖的面積為故選:A.2、B【解析】由已知直線過圓心得,再用均值不等式即可.【詳解】由已知直線過圓心得:,,當(dāng)且僅當(dāng)時(shí)取等.故選:B.3、A【解析】由公理2的推論即可得到答案.【詳解】由公理2的推論:過一條直線和直線外一點(diǎn),有且只有一個(gè)平面,可得在同一平面,故充分條件成立;由公理2的推論:過兩條平行直線,有且只有一個(gè)平面,可得,當(dāng)時(shí),同一個(gè)平面上,但中無三點(diǎn)共線,故必要條件不成立;故選:A【點(diǎn)睛】本題考查點(diǎn)線面的位置關(guān)系和充分必要條件的判斷,重點(diǎn)考查公理2及其推論;屬于中檔題;公理2的三個(gè)推論:經(jīng)過一條直線和直線外一點(diǎn),有且只有一個(gè)平面;經(jīng)過兩條平行直線,有且只有一個(gè)平面;經(jīng)過兩條相交直線,有且只有一個(gè)平面;4、D【解析】根據(jù)已知在處取得極值,可得,將在恒成立,轉(zhuǎn)化為,只需求,求出最小值即可得答案【詳解】解:,,由在處取得極值,得,解得,所以,,其中,.當(dāng)時(shí),,此時(shí)函數(shù)單調(diào)遞減,當(dāng)時(shí),,此時(shí)函數(shù)單調(diào)遞增,故函數(shù)在處取得極小值,,恒成立,轉(zhuǎn)化為,令,,則,,令得,當(dāng)時(shí),,此時(shí)函數(shù)單調(diào)遞減,當(dāng)時(shí),,此時(shí)函數(shù)單調(diào)遞增,所以,即得,故選:D5、D【解析】作出不等式組所表示平面區(qū)域,可得出結(jié)論.【詳解】由可得或,作出不等式組所表示的平面區(qū)域如下圖中的陰影部分區(qū)域所示:由圖可知,不等式表示的平面區(qū)域是一個(gè)梯形.故選:D.6、B【解析】由題意及雙曲線的定義可得,的值,進(jìn)而可得A不正確,計(jì)算可判斷B正確,再求出,的關(guān)系可得C不正確,求出,的關(guān)系,進(jìn)而求出漸近線的方程,可得D不正確【詳解】因?yàn)?,又由題意及雙曲線的定義可得:,則,,所以A不正確;因?yàn)樵谝詾橹睆降膱A上,所以,所以,所以B正確;在△中,由勾股定理可得,即,所以離心率,所以C不正確;由C的分析可知:,故,所以漸近線的方程為,即,所以D不正確;故選:B7、B【解析】首先地推公式變形,得,,求得數(shù)列的通項(xiàng)公式后,再解不等式.【詳解】因?yàn)椋瑑蛇吶〉箶?shù),得,整理為:,,所以數(shù)列是首項(xiàng)為1,公差為4的等差數(shù)列,,,因?yàn)?,即,得,解得:?所以的最大值是7.故選:B8、C【解析】通過寫出幾項(xiàng),尋找規(guī)律,即可得到和滿足的遞推公式.【詳解】若甲柱有個(gè)盤,甲柱上的盤從上往下設(shè)為,其中,,當(dāng)時(shí),將移到乙柱,只移動(dòng)1次;當(dāng)時(shí),將移到乙柱,將移到乙柱,移動(dòng)2次;當(dāng)時(shí),將移到丙柱,將移到丙柱,將移到乙柱,再將移到乙柱,將移到乙柱,;當(dāng)時(shí),將上面的3個(gè)移到丙柱,共次,然后將移到乙柱,再將丙柱的3個(gè)移到乙柱,共次,所以次;當(dāng)時(shí),將上面的4個(gè)移到丙柱,共次,然后將移到乙柱,再將丙柱的4個(gè)移到乙柱,共次,所以次;……以此類推,可知,故選.【點(diǎn)睛】主要考查了數(shù)列遞推公式的求解,屬于中檔題.這類型題的關(guān)鍵是寫出幾項(xiàng),尋找規(guī)律,從而得到對(duì)應(yīng)的遞推公式.9、A【解析】根據(jù)是等腰直角三角形,再表示出的長,利用三角形的幾何性質(zhì)即可求得答案.【詳解】線段的中點(diǎn)在y軸上,設(shè)的中點(diǎn)為M,因?yàn)镺為的中點(diǎn),所以,而,則,為等腰三角形,故,由,得,又為等腰直角三角形,故,即,解得,即,故選:A.10、D【解析】分析焦點(diǎn)三角形即可【詳解】如圖,設(shè)左焦點(diǎn)為,因?yàn)?所以不妨設(shè),則離心率故選:D11、D【解析】根據(jù),解不等式即可求解.【詳解】由方程表示圓,則,解得.所以實(shí)數(shù)m的取值范圍為.故選:D12、D【解析】先求出雙曲線的漸近線方程,然后分別與直線聯(lián)立,求出A、B兩點(diǎn)的橫坐標(biāo),再利用可求解.【詳解】由雙曲線方程可知其漸近線方程為:,當(dāng)時(shí),與聯(lián)立,得,同理得,由,且可知,所以有,解得.故選:D二、填空題:本題共4小題,每小題5分,共20分。13、200【解析】在Rt△ABC中求得AC的值,△ACQ中由正弦定理求得AQ的值,在Rt△APQ中求得PQ的值【詳解】根據(jù)題意,可得Rt△ABC中,∠BAC=60°,BC=300,∴AC200;△ACQ中,∠AQC=45°+15°=60°,∠QAC=180°﹣45°﹣60°=75°,∴∠QCA=180°﹣∠AQC﹣∠QAC=45°,由正弦定理,得,解得AQ200,在Rt△APQ中,PQ=AQsin45°=200200m故答案為200【點(diǎn)睛】本題考查了解三角形的應(yīng)用問題,考查正弦定理,三角形內(nèi)角和問題,考查轉(zhuǎn)化化歸能力,是基礎(chǔ)題14、25【解析】根據(jù),,且,由,利用基本不等式求解.【詳解】因?yàn)?,,且,所以,?dāng)且僅當(dāng),即時(shí),等號(hào)成立,所以的最小值為25,故答案為:2515、5【解析】根據(jù)拋物線的定義知點(diǎn)P到焦點(diǎn)距離等于到準(zhǔn)線的距離即可求解.【詳解】因?yàn)閽佄锞€方程為,所以準(zhǔn)線方程,所以點(diǎn)到準(zhǔn)線的距離為,故點(diǎn)到該拋物線焦點(diǎn)的距離.故答案為:16、-1或2【解析】根據(jù)兩直線平行,利用直線平行的條件列出方程解得答案.【詳解】∵,∴,解得或,經(jīng)驗(yàn)證都符合題意,故答案為:-1或2三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)的遞增區(qū)間為,遞減區(qū)間為(2)【解析】(1)先求出函數(shù)的導(dǎo)數(shù),令、解出對(duì)應(yīng)的解集,結(jié)合定義域即可得到函數(shù)的單調(diào)區(qū)間;(2)將不等式轉(zhuǎn)化為,令,利用導(dǎo)數(shù)討論函數(shù)分別在、時(shí)的單調(diào)性,進(jìn)而求出函數(shù)的最值,即可得出答案.【小問1詳解】函數(shù)的定義域?yàn)?,又?dāng)時(shí),,當(dāng)時(shí),故的遞增區(qū)間為,遞減區(qū)間為.【小問2詳解】,即,令,有,,若,在上恒成立.則在上為減函數(shù),所以有若,由,可得,則在上增,所以在上存在使得,與題意不符合綜上所述,.18、(1)(2)【解析】(1)直接運(yùn)用圓錐的表面積公式計(jì)算即可;(2)建立空間直角坐標(biāo),然后運(yùn)用向量法計(jì)算可求得答案.【小問1詳解】【小問2詳解】如圖,建立直角坐標(biāo)系,,,,∴B在CD上投影的長度∴B到CD的距離解法2:設(shè)直線CD上一點(diǎn)E滿足令,則∴,∴,∴∴,故B到CD距離為.19、(1);(2)【解析】(1)求出橢圓的焦點(diǎn)和頂點(diǎn),即得雙曲線的頂點(diǎn)和焦點(diǎn),從而易求得標(biāo)準(zhǔn)方程;(2)將代入,得由直線與雙曲線交于不同的兩點(diǎn),得的取值范圍,設(shè),由韋達(dá)定理得則代入可求得的范圍【詳解】(1)設(shè)雙曲線的方程為,則,再由,得故的方程為(2)將代入,得由直線與雙曲線交于不同的兩點(diǎn),得①設(shè)則又,得,,即,解得②由①②得<k2<1,故的取值范圍【點(diǎn)睛】本題考查雙曲線的標(biāo)準(zhǔn)方程,考查直線與雙曲線相交中的范圍問題.應(yīng)注意:(1)利用圓錐曲線的幾何性質(zhì)或判別式構(gòu)造不等關(guān)系,從而確定參數(shù)的取值范圍(2)利用已知參數(shù)的范圍,求新參數(shù)的范圍,解這類問題的核心是建立兩個(gè)參數(shù)之間的等量關(guān)系(3)利用隱含的不等關(guān)系建立不等式,從而求出參數(shù)的取值范圍(4)利用已知的不等關(guān)系構(gòu)造不等式,從而求出參數(shù)的取值范圍(5)利用求函數(shù)的值域的方法將待求量表示為其他變量的函數(shù),求其值域,從而確定參數(shù)的取值范圍20、(1)0(2)f(x)在(0,π)上有且只有一個(gè)零點(diǎn),理由見解析【解析】(1)利用導(dǎo)數(shù)的幾何意義求解;(2)由,可得,令,,,,利用導(dǎo)數(shù)法求解.【小問1詳解】解:,所以k=f′(0)=-a=0,所以a=0;【小問2詳解】由,可得,令,,所以,①當(dāng)時(shí),sinx+cosx≥1,ex>1,所以g′(x)>0,所以g(x)在上單調(diào)遞增,又因?yàn)間(0)=0,所以g(x)在上無零點(diǎn);②當(dāng)時(shí),令,所以h′(x)=2cosxex<0,即h(x)在上單調(diào)遞減,又因?yàn)?,h(π)=-eπ-1<0,所以存在,,所以g(x)在上單調(diào)遞增,在上單調(diào)遞減,因?yàn)?,g(π)=-π<0,所以g(x)在上且只有一個(gè)零點(diǎn);綜上所述:f(x)在(0,π)上有且只有一個(gè)零點(diǎn)21、(1)是,;(2)【解析】(1)由題意設(shè)出所在直線方程,與拋物線方程聯(lián)立,化為關(guān)于的一元二次方程,由根與系數(shù)的關(guān)系即可求得為定值;(2)當(dāng)?shù)男甭蕿?時(shí),求得三角形的面積為;當(dāng)?shù)男甭什粸?時(shí),由弦長公式求解,再由點(diǎn)到直線的距離公式求到的距離,代入三角形面積公式,利用函數(shù)單調(diào)性可得三角形的面積大于,由此可得面積的最小值【詳解】(1)由題意知,直線斜率存在,不妨設(shè)其方程為,聯(lián)立拋物線的方程可得,設(shè),,則,,所以,,所以,所以是定值(2)當(dāng)直線的斜率為0時(shí),,又,,此時(shí)當(dāng)直線的斜率不力0時(shí),,又因?yàn)?,且直線的斜率不為0,所以,即,所以點(diǎn)到直線的距離,此時(shí),因?yàn)椋?,綜上,面積的最小值為22、(1);(2).【解析】(1)根據(jù)給定條件結(jié)合列式計(jì)算即可作答.(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025屆河南省濟(jì)源市生物高一第一學(xué)期期末考試試題含解析
- 2024年材料員資格考試必考重點(diǎn)練習(xí)題庫及答案(共970題)
- 北京市西城外國語學(xué)校2025屆語文高三第一學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測試題含解析
- 2025屆湖北省武漢為明學(xué)校高一生物第一學(xué)期期末監(jiān)測模擬試題含解析
- 河南省通許縣麗星高級(jí)中學(xué)2025屆數(shù)學(xué)高一上期末調(diào)研模擬試題含解析
- 2025屆江蘇省海安中學(xué)語文高三上期末復(fù)習(xí)檢測試題含解析
- 遵義縣第一中學(xué)2025屆高一上數(shù)學(xué)期末綜合測試試題含解析
- 廣東省廣州市增城區(qū)四校聯(lián)考2025屆高二生物第一學(xué)期期末經(jīng)典試題含解析
- 2025屆上海嘉定區(qū)語文高三上期末學(xué)業(yè)質(zhì)量監(jiān)測試題含解析
- 安徽省黃山市徽州區(qū)第一中學(xué)2025屆生物高三第一學(xué)期期末經(jīng)典試題含解析
- 【大單元教學(xué)】Unit 8 單元整體教學(xué)設(shè)計(jì)
- 四年級(jí)英語 Can you run fast (市一等獎(jiǎng))
- 艾滋病反歧視講座課件
- 食品審計(jì)報(bào)告
- 城市環(huán)境設(shè)施設(shè)計(jì)全套教學(xué)課件
- 煙草雪茄培訓(xùn)課件講解
- 家長進(jìn)課堂醫(yī)學(xué)心肺復(fù)蘇
- Unit3ConservationLesson3TheRoadtoDestruction課件-北師大版選擇性
- 園區(qū)玫瑰活動(dòng)策劃方案
- 2024全新學(xué)校食堂人員培訓(xùn)
- 豬肉配送管理制度
評(píng)論
0/150
提交評(píng)論