福建省廈門外國語中學(xué)2025屆高二上數(shù)學(xué)期末監(jiān)測模擬試題含解析_第1頁
福建省廈門外國語中學(xué)2025屆高二上數(shù)學(xué)期末監(jiān)測模擬試題含解析_第2頁
福建省廈門外國語中學(xué)2025屆高二上數(shù)學(xué)期末監(jiān)測模擬試題含解析_第3頁
福建省廈門外國語中學(xué)2025屆高二上數(shù)學(xué)期末監(jiān)測模擬試題含解析_第4頁
福建省廈門外國語中學(xué)2025屆高二上數(shù)學(xué)期末監(jiān)測模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

福建省廈門外國語中學(xué)2025屆高二上數(shù)學(xué)期末監(jiān)測模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若直線與圓:相切,則()A.-2 B.-2或6C.2 D.-6或22.如圖,直三棱柱的所有棱長均相等,P是側(cè)面內(nèi)一點,設(shè),若P到平面的距離為2d,則點P的軌跡是()A.圓的一部分 B.橢圓的一部分C.拋物線的一部分 D.雙曲線的一部分3.已知條件:,條件:表示一個橢圓,則是的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件4.學(xué)校為了解學(xué)生在課外讀物方面的支出情況,抽取了n位同學(xué)進行調(diào)查,結(jié)果顯示這些同學(xué)的支出都在(單位:元)內(nèi),其中支出在(單位:元)內(nèi)的同學(xué)有67人,其頻率分布直方圖如圖所示,則n的值為()A.100 B.120C.130 D.3905.記不超過x的最大整數(shù)為,如,.已知數(shù)列的通項公式,則使的正整數(shù)n的最大值為()A.5 B.6C.15 D.166.函數(shù)在區(qū)間上平均變化率等于()A. B.C. D.7.命題“?x∈[1,2],x2-a≤0”為真命題的一個充分不必要條件是()A.a≥4 B.a≤4C.a≥5 D.a≤58.已知數(shù)列為遞增等比數(shù)列,,則數(shù)列的前2019項和()A. B.C. D.9.若拋物線y2=4x上一點P到x軸的距離為2,則點P到拋物線的焦點F的距離為()A.4 B.5C.6 D.710.已知,記M到x軸的距離為a,到y(tǒng)軸的距離為b,到z軸的距離為c,則()A. B.C. D.11.已知雙曲線:的右焦點為,過的直線(為常數(shù))與雙曲線在第一象限交于點.若(為原點),則的離心率為()A. B.C. D.512.某學(xué)校的校車在早上6:30,6:45,7:00到達某站點,小明在早上6:40至7:10之間到達站點,且到達的時刻是隨機的,則他等車時間不超過5分鐘的概率是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù),設(shè),且函數(shù)有3個不同的零點,則實數(shù)k的取值范圍為___________.14.命題“若,則二元一次不等式表示直線的右上方區(qū)域(包含邊界)”的條件:_________,結(jié)論:_____________,它是_________命題(填“真”或“假”).15.已知正數(shù)滿足,則的最小值是__________.16.拋物線的焦點坐標(biāo)為________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,四棱錐的底面為正方形,底面,設(shè)平面與平面的交線為.(1)證明:;(2)已知,為直線上的點,求與平面所成角的正弦值的最大值.18.(12分)某情報站有.五種互不相同的密碼,每周使用其中的一種密碼,且每周都是從上周末使用的四種密碼中等可能地隨機選用一種.設(shè)第一周使用密碼,表示第周使用密碼的概率(1)求;(2)求證:為等比數(shù)列,并求的表達式19.(12分)如圖,四棱錐中,平面,∥,,,為上一點,平面(Ⅰ)求證:∥平面;(Ⅱ)若,求點D到平面EMC的距離20.(12分)如圖所示,在四棱錐中,底面是正方形,側(cè)棱底面,,是的中點,過點作交于點.求證:(1)平面;(2)平面.21.(12分)已知圓C的圓心在坐標(biāo)原點,且過點M()(1)求圓C的方程;(2)已知點P是圓C上的動點,試求點P到直線的距離的最小值;22.(10分)已知函數(shù),.(1)當(dāng)時,求不等式的解集;(2)若在上恒成立,求取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】利用圓心到直線距離等于半徑得到方程,解出的值.【詳解】圓心為,半徑為,由題意得:,解得:或6.故選:B2、B【解析】取的中點,得出平面,作,在直角中,求得,以為原點,為軸,為軸建立平面直角坐標(biāo)系,求得點的軌跡方程,即可求解.【詳解】如圖所示,取的中點,連接,得到平行于平面且過點的平面,如圖(1)(2)所示,作,則P1與E重合,則,在直角中,可得,在圖(3)中,設(shè)直三棱柱的所有棱長均為,且,以為原點,為軸,為軸建立平面直角坐標(biāo)系,則,所以,即所以,整理得,所以點P的軌跡是橢圓的一部分.故選:B.3、B【解析】根據(jù)曲線方程,結(jié)合充分、必要性的定義判斷題設(shè)條件間的關(guān)系.【詳解】由,若,則表示一個圓,充分性不成立;而表示一個橢圓,則成立,必要性成立.所以是的必要不充分條件.故選:B4、A【解析】根據(jù)小矩形的面積之和,算出位于10~30的2組數(shù)的頻率之和為0.33,從而得到位于30~50的數(shù)據(jù)的頻率之和為1-0.33=0.67,再由頻率計算公式即可算出樣本容量的值.【詳解】位于10~20、20~30的小矩形的面積分別為位于10~20、20~30的據(jù)的頻率分別為0.1、0.23可得位于10~30的前3組數(shù)的頻率之和為0.1+0.23=0.33由此可得位于30~50數(shù)據(jù)的頻率之和為1-0.33=0.67∵支出在[30,50)的同學(xué)有67人,即位于30~50的頻數(shù)為67,∴根據(jù)頻率計算公式,可得解之得.故選:A5、C【解析】根據(jù)取整函數(shù)的定義,可求出的值,即可得到答案;【詳解】,,,,,,當(dāng)時,,使的正整數(shù)n的最大值為,故選:C6、C【解析】根據(jù)平均變化率的定義算出答案即可.【詳解】函數(shù)在區(qū)間上的平均變化率等于故選:C7、C【解析】先要找出命題為真命題的充要條件,從集合的角度充分不必要條件應(yīng)為的真子集,由選擇項不難得出答案【詳解】命題“?x∈[1,2],x2-a≤0”為真命題,可化為?x∈[1,2],恒成立即只需,即命題“?x∈[1,2],x2-a≤0”為真命題的的充要條件為,而要找的一個充分不必要條件即為集合的真子集,由選擇項可知C符合題意.故選:C8、C【解析】根據(jù)數(shù)列為遞增的等比數(shù)列,,利用“”法求得,再代入等比數(shù)列的前n項和公式求解.【詳解】因為數(shù)列為遞增等比數(shù)列,所以,解得:,所以.故選:C【點睛】本題主要考查等比數(shù)列的基本運算,還考查了運算求解的能力,屬于基礎(chǔ)題.9、A【解析】根據(jù)拋物線y2=4x上一點P到x軸的距離為2,得到點P(3,±2),然后利用拋物線的定義求解.【詳解】由題意,知拋物線y2=4x的準線方程為x=-1,∵拋物線y2=4x上一點P到x軸的距離為2,則P(3,±2),∴點P到拋物線的準線的距離為3+1=4,∴點P到拋物線的焦點F的距離為4.故選:A.10、C【解析】分別求出點M在x軸,y軸,z軸上的投影點的坐標(biāo),再借助空間兩點間距離公式計算作答.【詳解】設(shè)點M在x軸上的投影點,則,而x軸的方向向量,由得:,解得,則,設(shè)點M在y軸上的投影點,則,而y軸的方向向量,由得:,解得,則,設(shè)點M在z軸上的投影點,則,而z軸的方向向量,由得:,解得,則,所以.故選:C11、D【解析】取雙曲線的左焦點,連接,計算可得,即.設(shè),則,,解得:,利用勾股定理計算可得,即可得出結(jié)果.【詳解】取雙曲線的左焦點,連接,,則因為,所以,即.,.設(shè),則,,解得:.,,..故選:D12、B【解析】求出小明等車時間不超過5分鐘能乘上車的時長,即可計算出概率.【詳解】6:40至7:10共30分鐘,小明同學(xué)等車時間不超過5分鐘能乘上車只能是6:40至6:45和6:55至7:00到站,共10分鐘,所以所求概率為.故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由題意畫出函數(shù)圖象,把函數(shù)有3個不同的零點的問題轉(zhuǎn)化為函數(shù)與函數(shù)有3個交點的問題,分為和時分類討論即可.【詳解】作出函數(shù)的圖象如下圖所示,要使函數(shù)有3個不同的零點,則函數(shù)和函數(shù)有三個交點,由已知得函數(shù)恒過點,當(dāng)時,過點時,函數(shù)和函數(shù)有三個交點,將代入得,即,當(dāng)時,與相切時,此時函數(shù)和函數(shù)有兩個交點,如圖所示,,設(shè)此時的切點為,則直線的斜率為,直線的方程為,將點代入得,解得,此時的斜率為,將逆時針旋轉(zhuǎn)至和平行時,即為的位置時,函數(shù)和函數(shù)有三個交點,此時,故的范圍為,綜上所述實數(shù)k的取值范圍為.故答案為:.14、①.②.二元一次不等式表示直線的右上方區(qū)域(包含邊界)③.真【解析】由二元一次不等式的意義可解答問題.【詳解】因為,二元一次不等式所表示的區(qū)域如下圖所示:所以在的條件下,二元一次不等式表示直線的右上方區(qū)域(包含邊界),此命題是真命題.故答案為:;二元一次不等式表示直線的右上方區(qū)域(包含邊界);真15、8【解析】利用“1”代換,結(jié)合基本不等式求解.【詳解】因為,,所以,當(dāng)且僅當(dāng),即時等號成立,所以當(dāng)時,取得最小值8.故答案為:8.16、【解析】利用焦點坐標(biāo)為求解即可【詳解】因為,所以,所以焦點的坐標(biāo)為,故答案:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】(1)由可證得平面,根據(jù)線面平行的性質(zhì)可證得結(jié)論;(2)以為坐標(biāo)原點建立空間直角坐標(biāo)系,設(shè),利用線面角的向量求法可表示出,分別在、和三種情況下,結(jié)合基本不等式求得所求最大值.【小問1詳解】四邊形為正方形,,又平面,平面,平面,又平面,平面平面,.【小問2詳解】以為坐標(biāo)原點,為軸可建立如圖所示空間直角坐標(biāo)系,則,,,,由(1)知:,則可設(shè),,,,設(shè)平面的法向量,則,令,則,,,設(shè)直線與平面所成角為,;當(dāng)時,;當(dāng)時,(當(dāng)且僅當(dāng),即時取等號);當(dāng)時,;綜上所述:直線與平面所成角正弦值的最大值為.18、(1),,,(2)證明見解析,【解析】(1)根據(jù)題意可得第一周使用A密碼,第二周使用A密碼的概率為0,第三周使用A密碼的概率為,以此類推;(2)根據(jù)題意可知第周從剩下的四種密碼中隨機選用一種,恰好選到A密碼的概率為,進而可得,結(jié)合等比數(shù)列的定義可知為等比數(shù)列,利用等比數(shù)列的通項公式即可求出結(jié)果.【小問1詳解】,,,【小問2詳解】第周使用A密碼,則第周必不使用A密碼(概率為),然后第周從剩下的四種密碼中隨機選用一種,恰好選到A密碼的概率為故,即故為等比數(shù)列且,公比故,故19、(Ⅰ)證明見解析;(Ⅱ)【解析】(Ⅰ)運用線面平行的判定定理證明;(Ⅱ)借助體積相等建立方程求解即可【詳解】(Ⅰ)證明:取的中點,連接,因為,所以,又因為平面,所以,所以平面,因為平面,所以∥,面,平面,所以∥平面;(Ⅱ)因為平面,面,所以平面平面,平面平面,過點作直線,則平面,由已知平面,∥,,可得,又,所以為的中點,在中,,在中,,,在中,,由等面積法知,所以,即點D到平面EMC的距離為.考點:直線與平面的位置關(guān)系及運用【易錯點晴】本題考查的是空間的直線與平面平行的推證問題和點到直線的距離問題.解答時,證明問題務(wù)必要依據(jù)判定定理,因此線面的平行問題一定要在所給的平面中找出一條直線與這個平面外的直線平行,敘述時一定要交代面外的線和面內(nèi)的線,這是許多學(xué)生容易忽視的問題,也高考閱卷時最容易扣分的地方,因此在表達時一定要引起注意20、(1)證明見解析;(2)證明見解析.【解析】(1)連結(jié)、,交于點,連結(jié),通過即可證明;(2)通過,

可證平面,即得,進而通過平面得,結(jié)合即證.詳解】證明:(1)連結(jié)、,交于點,連結(jié),底面正方形,∴是中點,點是的中點,.平面,

平面,∴平面.(2),點是的中點,.底面是正方形,側(cè)棱底面,∴,

,且

,∴平面,∴,又,∴平面,∴,,,平面.【點睛】本題考查線面平行和線面垂直的證明,屬于基礎(chǔ)題.21、(1)(2)【解析】(1)由圓C的圓心在坐標(biāo)原點,且過點,求得圓的半徑,利用圓的標(biāo)準方程,即可求解;(2)由點到直線的距離公式,求得圓心到直線l的距離為,進而得到點P到直線的距離的最小值為,得出答案.【詳解】(1)由題意,圓C的圓心在坐標(biāo)原點,且過點,所以圓C的半徑為,所以圓

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論