




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆安徽省皖江名校聯(lián)盟數(shù)學高三第一學期期末達標測試試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知,若則實數(shù)的取值范圍是()A. B. C. D.2.在直角梯形中,,,,,點為上一點,且,當?shù)闹底畲髸r,()A. B.2 C. D.3.若樣本的平均數(shù)是10,方差為2,則對于樣本,下列結論正確的是()A.平均數(shù)為20,方差為4 B.平均數(shù)為11,方差為4C.平均數(shù)為21,方差為8 D.平均數(shù)為20,方差為84.如圖,長方體中,,,點T在棱上,若平面.則()A.1 B. C.2 D.5.雙曲線﹣y2=1的漸近線方程是()A.x±2y=0 B.2x±y=0 C.4x±y=0 D.x±4y=06.某醫(yī)院擬派2名內科醫(yī)生、3名外科醫(yī)生和3名護士共8人組成兩個醫(yī)療分隊,平均分到甲、乙兩個村進行義務巡診,其中每個分隊都必須有內科醫(yī)生、外科醫(yī)生和護士,則不同的分配方案有A.72種 B.36種 C.24種 D.18種7.函數(shù)f(x)=lnA. B. C. D.8.a為正實數(shù),i為虛數(shù)單位,,則a=()A.2 B. C. D.19.若復數(shù)在復平面內對應的點在第二象限,則實數(shù)的取值范圍是()A. B. C. D.10.“”是“,”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分又不必要條件11.在中,為上異于,的任一點,為的中點,若,則等于()A. B. C. D.12.已知三棱錐P﹣ABC的頂點都在球O的球面上,PA,PB,AB=4,CA=CB,面PAB⊥面ABC,則球O的表面積為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知雙曲線的一條漸近線為,且經過拋物線的焦點,則雙曲線的標準方程為______.14.已知a,b均為正數(shù),且,的最小值為________.15.在棱長為的正方體中,是面對角線上兩個不同的動點.以下四個命題:①存在兩點,使;②存在兩點,使與直線都成的角;③若,則四面體的體積一定是定值;④若,則四面體在該正方體六個面上的正投影的面積的和為定值.其中為真命題的是____.16.的展開式中,的系數(shù)為____________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)某公司生產的某種產品,如果年返修率不超過千分之一,則其生產部門當年考核優(yōu)秀,現(xiàn)獲得該公司年的相關數(shù)據如下表所示:年份20112012201320142015201620172018年生產臺數(shù)(萬臺)2345671011該產品的年利潤(百萬元)2.12.753.53.2534.966.5年返修臺數(shù)(臺)2122286580658488部分計算結果:,,,,注:年返修率=(1)從該公司年的相關數(shù)據中任意選取3年的數(shù)據,以表示3年中生產部門獲得考核優(yōu)秀的次數(shù),求的分布列和數(shù)學期望;(2)根據散點圖發(fā)現(xiàn)2015年數(shù)據偏差較大,如果去掉該年的數(shù)據,試用剩下的數(shù)據求出年利潤(百萬元)關于年生產臺數(shù)(萬臺)的線性回歸方程(精確到0.01).附:線性回歸方程中,,.18.(12分)求下列函數(shù)的導數(shù):(1)(2)19.(12分)為了解甲、乙兩個快遞公司的工作狀況,假設同一個公司快遞員的工作狀況基本相同,現(xiàn)從甲、乙兩公司各隨機抽取一名快遞員,并從兩人某月(30天)的快遞件數(shù)記錄結果中隨機抽取10天的數(shù)據,整理如下:甲公司員工:410,390,330,360,320,400,330,340,370,350乙公司員工:360,420,370,360,420,340,440,370,360,420每名快遞員完成一件貨物投遞可獲得的勞務費情況如下:甲公司規(guī)定每件0.65元,乙公司規(guī)定每天350件以內(含350件)的部分每件0.6元,超出350件的部分每件0.9元.(1)根據題中數(shù)據寫出甲公司員工在這10天投遞的快件個數(shù)的平均數(shù)和眾數(shù);(2)為了解乙公司員工每天所得勞務費的情況,從這10天中隨機抽取1天,他所得的勞務費記為(單位:元),求的分布列和數(shù)學期望;(3)根據題中數(shù)據估算兩公司被抽取員工在該月所得的勞務費.20.(12分)新高考,取消文理科,實行“”,成績由語文、數(shù)學、外語統(tǒng)一高考成績和自主選考的3門普通高中學業(yè)水平考試等級性考試科目成績構成.為了解各年齡層對新高考的了解情況,隨機調查50人(把年齡在稱為中青年,年齡在稱為中老年),并把調查結果制成下表:年齡(歲)頻數(shù)515101055了解4126521(1)分別估計中青年和中老年對新高考了解的概率;(2)請根據上表完成下面列聯(lián)表,是否有95%的把握判斷對新高考的了解與年齡(中青年、中老年)有關?了解新高考不了解新高考總計中青年中老年總計附:.0.0500.0100.0013.8416.63510.828(3)若從年齡在的被調查者中隨機選取3人進行調查,記選中的3人中了解新高考的人數(shù)為,求的分布列以及.21.(12分)如圖,四棱錐的底面ABCD是正方形,為等邊三角形,M,N分別是AB,AD的中點,且平面平面ABCD.(1)證明:平面PNB;(2)問棱PA上是否存在一點E,使平面DEM,求的值22.(10分)已知函數(shù),(1)求函數(shù)的單調區(qū)間;(2)當時,判斷函數(shù),()有幾個零點,并證明你的結論;(3)設函數(shù),若函數(shù)在為增函數(shù),求實數(shù)的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
根據,得到有解,則,得,,得到,再根據,有,即,可化為,根據,則的解集包含求解,【詳解】因為,所以有解,即有解,所以,得,,所以,又因為,所以,即,可化為,因為,所以的解集包含,所以或,解得,故選:C【點睛】本題主要考查一元二次不等式的解法及集合的關系的應用,還考查了運算求解的能力,屬于中檔題,2、B【解析】
由題,可求出,所以,根據共線定理,設,利用向量三角形法則求出,結合題給,得出,進而得出,最后利用二次函數(shù)求出的最大值,即可求出.【詳解】由題意,直角梯形中,,,,,可求得,所以·∵點在線段上,設,則,即,又因為所以,所以,當時,等號成立.所以.故選:B.【點睛】本題考查平面向量線性運算中的加法運算、向量共線定理,以及運用二次函數(shù)求最值,考查轉化思想和解題能力.3、D【解析】
由兩組數(shù)據間的關系,可判斷二者平均數(shù)的關系,方差的關系,進而可得到答案.【詳解】樣本的平均數(shù)是10,方差為2,所以樣本的平均數(shù)為,方差為.故選:D.【點睛】樣本的平均數(shù)是,方差為,則的平均數(shù)為,方差為.4、D【解析】
根據線面垂直的性質,可知;結合即可證明,進而求得.由線段關系及平面向量數(shù)量積定義即可求得.【詳解】長方體中,,點T在棱上,若平面.則,則,所以,則,所以,故選:D.【點睛】本題考查了直線與平面垂直的性質應用,平面向量數(shù)量積的運算,屬于基礎題.5、A【解析】試題分析:漸近線方程是﹣y2=1,整理后就得到雙曲線的漸近線.解:雙曲線其漸近線方程是﹣y2=1整理得x±2y=1.故選A.點評:本題考查了雙曲線的漸進方程,把雙曲線的標準方程中的“1”轉化成“1”即可求出漸進方程.屬于基礎題.6、B【解析】
根據條件2名內科醫(yī)生,每個村一名,3名外科醫(yī)生和3名護士,平均分成兩組,則分1名外科,2名護士和2名外科醫(yī)生和1名護士,根據排列組合進行計算即可.【詳解】2名內科醫(yī)生,每個村一名,有2種方法,3名外科醫(yī)生和3名護士,平均分成兩組,要求外科醫(yī)生和護士都有,則分1名外科,2名護士和2名外科醫(yī)生和1名護士,若甲村有1外科,2名護士,則有C3若甲村有2外科,1名護士,則有C3則總共的分配方案為2×(9+9)=2×18=36種,故選:B.【點睛】本題主要考查了分組分配問題,解決這類問題的關鍵是先分組再分配,屬于??碱}型.7、C【解析】因為fx=lnx2-4x+4x-23=8、B【解析】
,選B.9、B【解析】
復數(shù),在復平面內對應的點在第二象限,可得關于a的不等式組,解得a的范圍.【詳解】,由其在復平面對應的點在第二象限,得,則.故選:B.【點睛】本題考查了復數(shù)的運算法則、幾何意義、不等式的解法,考查了推理能力與計算能力,屬于基礎題.10、B【解析】
先求出滿足的值,然后根據充分必要條件的定義判斷.【詳解】由得,即,,因此“”是“,”的必要不充分條件.故選:B.【點睛】本題考查充分必要條件,掌握充分必要條件的定義是解題基礎.解題時可根據條件與結論中參數(shù)的取值范圍進行判斷.11、A【解析】
根據題意,用表示出與,求出的值即可.【詳解】解:根據題意,設,則,又,,,故選:A.【點睛】本題主要考查了平面向量基本定理的應用,關鍵是要找到一組合適的基底表示向量,是基礎題.12、D【解析】
由題意畫出圖形,找出△PAB外接圓的圓心及三棱錐P﹣BCD的外接球心O,通過求解三角形求出三棱錐P﹣BCD的外接球的半徑,則答案可求.【詳解】如圖;設AB的中點為D;∵PA,PB,AB=4,∴△PAB為直角三角形,且斜邊為AB,故其外接圓半徑為:rAB=AD=2;設外接球球心為O;∵CA=CB,面PAB⊥面ABC,∴CD⊥AB可得CD⊥面PAB;且DC.∴O在CD上;故有:AO2=OD2+AD2?R2=(R)2+r2?R;∴球O的表面積為:4πR2=4π.故選:D.【點睛】本題考查多面體外接球表面積的求法,考查數(shù)形結合的解題思想方法,考查思維能力與計算能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
設以直線為漸近線的雙曲線的方程為,再由雙曲線經過拋物線焦點,能求出雙曲線方程.【詳解】解:設以直線為漸近線的雙曲線的方程為,∵雙曲線經過拋物線焦點,∴,∴雙曲線方程為,故答案為:.【點睛】本題主要考查雙曲線方程的求法,考查拋物線、雙曲線簡單性質的合理運用,屬于中檔題.14、【解析】
本題首先可以根據將化簡為,然后根據基本不等式即可求出最小值.【詳解】因為,所以,當且僅當,即、時取等號,故答案為:.【點睛】本題考查根據基本不等式求最值,基本不等式公式為,在使用基本不等式的時候要注意“”成立的情況,考查化歸與轉化思想,是中檔題.15、①③④【解析】
對于①中,當點與點重合,與點重合時,可判斷①正確;當點點與點重合,與直線所成的角最小為,可判定②不正確;根據平面將四面體可分成兩個底面均為平面,高之和為的棱錐,可判定③正確;四面體在上下兩個底面和在四個側面上的投影,均為定值,可判定④正確.【詳解】對于①中,當點與點重合,與點重合時,,所以①正確;對于②中,當點點與點重合,與直線所成的角最小,此時兩異面直線的夾角為,所以②不正確;對于③中,設平面兩條對角線交點為,可得平面,平面將四面體可分成兩個底面均為平面,高之和為的棱錐,所以四面體的體積一定是定值,所以③正確;對于④中,四面體在上下兩個底面上的投影是對角線互相垂直且對角線長度均為1的四邊形,其面積為定義,四面體在四個側面上的投影,均為上底為,下底和高均為1的梯形,其面積為定值,故四面體在該正方體六個面上的正投影的面積的和為定值,所以④正確.故答案為:①③④.【點睛】本題主要考查了以空間幾何體的結構特征為載體的謎題的真假判定及應用,其中解答中涉及到棱柱的集合特征,異面直線的關系和椎體的體積,以及投影的綜合應用,著重考查了推理與論證能力,屬于中檔試題.16、16【解析】
要得到的系數(shù),只要求出二項式中的系數(shù)減去的系數(shù)的2倍即可【詳解】的系數(shù)為.故答案為:16【點睛】此題考查二項式的系數(shù),屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)【解析】
(1)先判斷得到隨機變量的所有可能取值,然后根據古典概型概率公式和組合數(shù)計算得到相應的概率,進而得到分布列和期望.(2)由于去掉年的數(shù)據后不影響的值,可根據表中數(shù)據求出;然后再根據去掉年的數(shù)據后所剩數(shù)據求出即可得到回歸直線方程.【詳解】(1)由數(shù)據可知,,,,,五個年份考核優(yōu)秀.由題意的所有可能取值為,,,,,,,.故的分布列為:所以.(2)因為,所以去掉年的數(shù)據后不影響的值,所以.又去掉年的數(shù)據之后,所以,從而回歸方程為:.【點睛】求線性回歸方程時要涉及到大量的計算,所以在解題時要注意運算的合理性和正確性,對于題目中給出的中間數(shù)據要合理利用.本題考查概率和統(tǒng)計的結合,這也是高考中常出現(xiàn)的題型,屬于基礎題.18、(1);(2).【解析】
(1)根據復合函數(shù)的求導法則可得結果.(2)同樣根據復合函數(shù)的求導法則可得結果.【詳解】(1)令,,則,而,,故.(2)令,,則,而,,故,化簡得到.【點睛】本題考查復合函數(shù)的導數(shù),此類問題一般是先把函數(shù)分解為簡單函數(shù)的復合,再根據復合函數(shù)的求導法則可得所求的導數(shù),本題屬于容易題.19、(1)平均數(shù)為360,眾數(shù)為330;(2)見詳解;(3)甲公司:7020(元),乙公司:7281(元)【解析】
(1)將圖中甲公司員工A的所有數(shù)據相加,再除以總的天數(shù)10,即可求出甲公司員工A投遞快遞件數(shù)的平均數(shù).從中發(fā)現(xiàn)330出現(xiàn)的次數(shù)最多,故為眾數(shù);(2)由題意能求出的可能取值為340,360,370,420,440,分別求出相對應的概率,由此能求出的分布列和數(shù)學期望;(3)利用(1)(2)的結果,可估算兩公司的每位員工在該月所得的勞務費.【詳解】解:(1)由題意知甲公司員工在這10天投遞的快遞件數(shù)的平均數(shù)為.眾數(shù)為330.(2)設乙公司員工1天的投遞件數(shù)為隨機變量,則當時,當時,當時,當時,當時,的分布列為204219228273291(元);(3)由(1)估計甲公司被抽取員工在該月所得的勞務費為(元)由(2)估計乙公司被抽取員工在該月所得的勞務費為(元).【點睛】本題考查頻率分布表的應用,考查概率的求法,考查離散型隨機變量的分布列和數(shù)學期望的求法,是中檔題.20、(1);(2)見解析,有95%的把握判斷了解新高考與年齡(中青年、中老年)有關聯(lián);(3)分布列見解析,.【解析】
(1)分別求出中青年、中老年對高考了解的頻數(shù),即可求出概率;(2)根據數(shù)據列出列聯(lián)表,求出的觀測值,對照表格,即可得出結論;(3)年齡在的被調查者共5人,其中了解新高考的有2人,可能取值為0,1,2,分別求出概率,列出隨機變量分布列,根據期望公式即可求解.【詳解】(1)由題中數(shù)據可知,中青年對新高考了解的概率,中老年對新高考了解的概率.(2)列聯(lián)表如圖所示了解新高考不了解新高考總計中青年22830老年81220總計302050,所以有95%的把握判斷了解新高考與年齡(中青年、中老年)有關聯(lián).(3)年齡在的被調查者共5人,其中了解新高考的有2人,則抽取的3人中了解新高考的人數(shù)可能取值為0,1,2,則;;.所以的分布列為012.【點睛】本題考查概率、獨立性檢驗及隨機變量分布列和期望,考查計算求解能力,屬于基礎題.21、(1)證明見解析;(2)存在,.【解析】
(1)根據題意證出,,再由線面垂直的判定定理即可證出.(2)連接AC交DM于點Q,連接EQ,利用線面平行的性質定理可得,從而可得,在正方形ABCD中,由即可求解.【詳解】(1)證明:在正方形ABCD中,M,N分別是AB,AD的中點,∴,,.∴.∴.又,∴,∴.∵為等邊三角形,N是AD的中點,∴.又平面平面ABCD,平面PAD,平面平面,∴平面ABCD.又平面ABCD,∴.∵平面PNB,,∴平面PNB.(2)解:存在.如圖,連接AC交DM于點Q,連接EQ.∵平面DEM,平面PAC,平面平面,∴.∴.在正方形ABCD中,,且.∴,∴.故.所以棱PA上存在點E,使平面DEM,此時,E是棱A的靠近點A的三等分點.【點睛】本題考查了線面垂直的判定定理、線面平行的性質定理,考查了學生的推理能力以及空間想象能力,屬于空間幾何中的基礎題.22、(1)單調增區(qū)間,單調減區(qū)間為,;(2)有2個零點,證明見解析;
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年房屋買賣合同的履行與違約行為解析
- 廣州南方學院《室內裝飾材料與工程預算》2023-2024學年第一學期期末試卷
- 2025年湖南省邵陽市武岡三中學初三下學期第二次聯(lián)考(5月)英語試題含答案
- 2024-2025學年河南濮陽建業(yè)國際學校高三下學期期末模擬語文試題含解析
- 第8單元 可能性2024-2025學年四年級上冊數(shù)學教案(北師大版)
- 九江職業(yè)技術學院《三維動畫創(chuàng)作(I)》2023-2024學年第一學期期末試卷
- 中南林業(yè)科技大學涉外學院《藝術素養(yǎng)拓展(音樂一)》2023-2024學年第一學期期末試卷
- 濰坊工商職業(yè)學院《運動處方》2023-2024學年第二學期期末試卷
- 2024-2025學年安徽省和縣初三(上)期末教學統(tǒng)一檢測試題化學試題試卷含解析
- 江蘇第二師范學院《產品交互設計》2023-2024學年第二學期期末試卷
- 課間操考核評比方案含打分標準打分表
- 2023版藥品生產質量管理規(guī)范 附錄1 無菌藥品
- 天星鄉(xiāng)養(yǎng)羊項目績效評價報告
- GB/T 39489-2020全尾砂膏體充填技術規(guī)范
- 《民法》全冊精講課件
- 廠內機動車輛課件
- 四川方言詞典(教你說一口地道的四川話)
- 企業(yè)標準編寫模板
- 《新媒體運營》考試參考題庫(含答案)
- 學校食堂餐廚具操作規(guī)程
- DB32T 3916-2020 建筑地基基礎檢測規(guī)程
評論
0/150
提交評論