版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
河南省新鄉(xiāng)市新鄉(xiāng)市一中2025屆高一數(shù)學(xué)第一學(xué)期期末達(dá)標(biāo)檢測試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.設(shè),,,則、、的大小關(guān)系是()A. B.C. D.2.如圖,其所對應(yīng)的函數(shù)可能是()A B.C. D.3.已知角的終邊經(jīng)過點,則A. B.C. D.4.圓的圓心到直線的距離是()A. B.C.1 D.5.在一段時間內(nèi),若甲去參觀市博物館的概率為0.8,乙去參觀市博物館的概率為0.6,且甲乙兩人各自行動.則在這段時間內(nèi),甲乙兩人至少有一個去參觀博物館的概率是()A.0.48 B.0.32C.0.92 D.0.846.已知、、是的三個內(nèi)角,若,則是A.鈍角三角形 B.銳角三角形C.直角三角形 D.任意三角形7.已知定義域為的函數(shù)滿足,且,若,則()A. B.C. D.8.如果命題“使得”是假命題,那么實數(shù)的取值范圍是()A. B.C. D.9.集合,,將集合A,B分別用如圖中的兩個圓表示,則圓中陰影部分表示的集合中元素個數(shù)恰好為2的是()A. B.C. D.10.已知定義域為的奇函數(shù)滿足,若方程有唯一的實數(shù)解,則()A.2 B.4C.8 D.16二、填空題:本大題共6小題,每小題5分,共30分。11.設(shè)函數(shù),若函數(shù)滿足對,都有,則實數(shù)的取值范圍是_______.12.定義為中的最大值,函數(shù)的最小值為,如果函數(shù)在上單調(diào)遞減,則實數(shù)的范圍為__________13.已知函數(shù),則的值是()A. B. C. D.14.已知,則的值為______.15.已知一個扇形的弧長為,其圓心角為,則這扇形的面積為______16.函數(shù)fx的定義域為D,給出下列兩個條件:①f1=0;②任取x1,x2∈D且x1≠三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知直線(1)求證:直線過定點(2)求過(1)的定點且垂直于直線直線方程.18.已知函數(shù),(1)當(dāng)時,求函數(shù)的值域;(2)若恒成立,求實數(shù)的取值范圍19.某同學(xué)用“五點法”畫函數(shù)在某一個周期內(nèi)的圖象時,列表并填入了部分?jǐn)?shù)據(jù),如下表:0x5020(1)請將表中數(shù)據(jù)補充完整,并直接寫出函數(shù)的解析式;(2)將的圖象向右平移3個單位,然后把曲線上各點的橫坐標(biāo)變?yōu)樵瓉淼谋叮v坐標(biāo)不變),得到的圖象.若關(guān)于x的方程在上有解,求實數(shù)a的取值范圍20.在正方體中挖去一個圓錐,得到一個幾何體,已知圓錐頂點為正方形的中心,底面圓是正方形的內(nèi)切圓,若正方體的棱長為.(1)求挖去的圓錐的側(cè)面積;(2)求幾何體的體積.21.(1)寫出下列兩組誘導(dǎo)公式:①關(guān)于與的誘導(dǎo)公式;②關(guān)于與的誘導(dǎo)公式.(2)從上述①②兩組誘導(dǎo)公式中任選一組,用任意角的三角函數(shù)定義給出證明.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】利用指數(shù)函數(shù)、對數(shù)函數(shù)的單調(diào)性比較、、三個數(shù)與、的大小關(guān)系,由此可得出、、的大小關(guān)系.【詳解】,即,,,因此,.故選:B.2、B【解析】代入特殊點的坐標(biāo)即可判斷答案.【詳解】設(shè)函數(shù)為,由圖可知,,排除C,D,又,排除A.故選:B.3、D【解析】由任意角的三角函數(shù)定義列式求解即可.【詳解】由角終邊經(jīng)過點,可得.故選D.【點睛】本題主要考查了任意角三角函數(shù)的定義,屬于基礎(chǔ)題.4、A【解析】根據(jù)圓的方程得出圓心坐標(biāo)(1,0),直接依據(jù)點到直線的距離公式可以得出答案.【詳解】圓的圓心坐標(biāo)為(1,0),∴圓心到直線的距離為.故選:A.【點睛】本題考查點到直線距離公式,屬于基礎(chǔ)題型.5、C【解析】根據(jù)題意求得甲乙都不去參觀博物館的概率,結(jié)合對立事件的概率計算公式,即可求解.【詳解】由甲去參觀市博物館的概率為0.8,乙去參觀市博物館的概率為0.6,可得甲乙都不去參觀博物館的概率為,所以甲乙兩人至少有一個去參觀博物館的概率是.故選:C.6、A【解析】依題意,可知B,C中有一角為鈍角,從而可得答案詳解】∵A是△ABC的一個內(nèi)角,∴sinA>0,又sinAcosBtanC<0,∴cosBtanC<0,∴B,C中有一角為鈍角,故△ABC為鈍角三角形故選A【點睛】本題考查三角形的形狀判斷,求得B,C中有一角為鈍角是判斷的關(guān)鍵,屬于中檔題7、A【解析】根據(jù),,得到求解.【詳解】因為,,所以,所以,所以,所以,,故選:A8、B【解析】特稱命題是假命題,則該命題的否定為全稱命題且是真命題,然后根據(jù)即可求解.【詳解】依題意,命題“使得”是假命題,則該命題的否定為“”,且是真命題;所以,.故選:B9、B【解析】首先求出集合,再結(jié)合韋恩圖及交集、并集、補集的定義計算可得;【詳解】解:∵,,∴,則,,選項A中陰影部分表示的集合為,即,故A錯誤;選項B中陰影部分表示的集合由屬于A但不屬于B的元素構(gòu)成,即,故B正確;選項C中陰影部分表示的集合由屬于B但不屬于A的元素構(gòu)成,即,有1個元素,故C錯誤;選項D中陰影部分表示的集合由屬于但不屬于的元素構(gòu)成,即,故D錯誤故選:B10、B【解析】由條件可得,為周期函數(shù),且一個周期為6,設(shè),則得到偶函數(shù),由有唯一的實數(shù)解,得有唯一的零點,則,從而得到答案.【詳解】由得,即,從而,所以為周期函數(shù),且一個周期為6,所以.設(shè),將的圖象向右平移1個單位長度,可得到函數(shù)的圖象,且為偶函數(shù).由有唯一的實數(shù)解,得有唯一的零點,從而偶函數(shù)有唯一的零點,且零點為,即,即,解得,所以故選:.【點睛】關(guān)鍵點睛:本題考查函數(shù)的奇偶性和周期性的應(yīng)用,解答本題的關(guān)鍵是由條件得到,得到為周期函數(shù),設(shè)的圖象,且為偶函數(shù).由有唯一的實數(shù)解,得有唯一的零點,從而偶函數(shù)有唯一的零點,且零點為,屬于中檔題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】首先根據(jù)題意可得出函數(shù)在上單調(diào)遞增;然后根據(jù)分段函數(shù)單調(diào)性的判斷方法,同時結(jié)合二次函數(shù)的單調(diào)性即可求出答案.【詳解】因為函數(shù)滿足對,都有,所以函數(shù)在上單調(diào)遞增.當(dāng)時,,此時滿足在上單調(diào)遞增,且;當(dāng)時,,其對稱軸為,當(dāng)時,上單調(diào)遞增,所以要滿足題意,需,即;當(dāng)時,在上單調(diào)遞增,所以要滿足題意,需,即;當(dāng)時,單調(diào)遞增,且滿足,所以滿足題意.綜上知,實數(shù)的取值范圍是.故答案為:.12、【解析】根據(jù)題意,將函數(shù)寫成分段函數(shù)的形式,分析可得其最小值,即可得的值,進而可得,由減函數(shù)的定義可得,解得的范圍,即可得答案【詳解】根據(jù)題意,,則,根據(jù)單調(diào)性可得先減后增,所以當(dāng)時,取得最小值2,則有,則,因為為減函數(shù),必有,解可得:,即m的取值范圍為;故答案為.【點睛】本題考查函數(shù)單調(diào)性、函數(shù)最值的計算,關(guān)鍵是求出c的值.13、B【解析】分段函數(shù)求值,根據(jù)自變量所在區(qū)間代相應(yīng)的對應(yīng)關(guān)系即可求解【詳解】函數(shù)那么可知,故選:B14、【解析】用誘導(dǎo)公式計算【詳解】,,故答案為:15、2【解析】根據(jù)弧長公式求出對應(yīng)的半徑,然后根據(jù)扇形的面積公式求面積即可.【詳解】設(shè)扇形的半徑為,圓心角為,弧長,可得=4,這條弧所在的扇形面積為,故答案為.【點睛】本題主要考查扇形的面積公式和弧長公式,意在考查對基礎(chǔ)知識與基本公式掌握的熟練程度,屬于中檔題.16、2x-1【解析】由題意可知函數(shù)在定義域內(nèi)為增函數(shù),且f1【詳解】因為函數(shù)fx的定義域為D,且任取x1,x2所以fx因為f1所以f(x)=2故答案為:2x-1三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2).【解析】⑴將直線化為,解不等式組即可得證;⑵由(1)知定點為,結(jié)合題目條件計算得直線方程解析:(1)根據(jù)題意將直線化為的解得,所以直線過定點(2)由(1)知定點為,設(shè)直線的斜率為k,且直線與垂直,所以,所以直線的方程為18、(1);(2).【解析】(1)采用換元,令,當(dāng)時,把函數(shù)轉(zhuǎn)化為二次函數(shù),即可求出答案.(2)采用換元,令,即在恒成立,即可求出答案.【小問1詳解】函數(shù),令,當(dāng)時,,的值域為.【小問2詳解】,恒成立,只需:在恒成立;令:則得.19、(1)填表見解析;;(2).【解析】(1)利用正弦型函數(shù)的性質(zhì)即得;(2)由題可得,利用正弦函數(shù)的性質(zhì)可得,即得,即求.【小問1詳解】0x2580200.【小問2詳解】由題可得,∵,∴,∴,∴,所以,∴.20、(1).(2).【解析】(1)求出圓錐的底面半徑和母線,利用公式側(cè)面積為即可;(2)正方體體積減去圓錐的體積即可.試題解析:(1)圓錐的底面半徑,高為,母線,∴挖去的圓錐的側(cè)面積為.(2)∵的體積為正方體體積減去圓錐的體積,∴的體積為.21、(1)詳見解析(2)詳見解析【解析】(1)按要求寫出對應(yīng)公式即可.(2)利用任意角定義以及對稱性即可證明對應(yīng)公式.【詳解】(1)①,,.②,,.(2)①證明:設(shè)任意角的終邊與單位圓的交點坐標(biāo)為.由于角的終
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 云南省昆明市九縣區(qū)2023-2024學(xué)年六年級上學(xué)期英語期末試卷
- 文化行業(yè)安全生產(chǎn)培訓(xùn)方案
- 2023年吉林省遼源市公開招聘警務(wù)輔助人員輔警筆試自考題1卷含答案
- 2023年浙江省衢州市公開招聘警務(wù)輔助人員輔警筆試自考題2卷含答案
- 2022年山東省青島市公開招聘警務(wù)輔助人員輔警筆試自考題2卷含答案
- 2024年遼寧省營口市公開招聘警務(wù)輔助人員輔警筆試自考題2卷含答案
- 畢業(yè)學(xué)員發(fā)言稿
- 《MTP管理教材》課件
- 《行業(yè)高增長確定》課件
- 暑假計算題綜合自檢卷練習(xí)題數(shù)學(xué)三年級下冊
- 2024年研究生考試考研思想政治理論(101)試卷及解答參考
- 年終獎發(fā)放通知范文
- 油田員工勞動合同范例
- 質(zhì)量安全總監(jiān)和質(zhì)量安全員考核獎懲制度
- Unit 5 Music Listening and Talking 說課稿-2023-2024學(xué)年高一英語人教版(2019)必修第二冊
- 快樂讀書吧:中國民間故事(專項訓(xùn)練)-2023-2024學(xué)年五年級語文上冊(統(tǒng)編版)
- 車間主任個人年終總結(jié)
- 2024年甘肅省公務(wù)員錄用考試《行測》試題及答案解析
- 職業(yè)技術(shù)學(xué)院《工程力學(xué)》課程標(biāo)準(zhǔn)
- 消防工程技術(shù)專業(yè)畢業(yè)實習(xí)報告范文
- 2024年高等教育法學(xué)類自考-00229證據(jù)法學(xué)考試近5年真題附答案
評論
0/150
提交評論