版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
廣西賀州市平桂管理區(qū)平桂高級(jí)中學(xué)2025屆數(shù)學(xué)高二上期末考試模擬試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫在答題卡上,寫在本試卷上無(wú)效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.等差數(shù)列中,已知,則()A.36 B.27C.18 D.92.已知是兩條不同的直線,是兩個(gè)不同的平面,則下列結(jié)論正確的是()A.若,則 B.若,則C.若,則 D.若,則3.兩圓x2+y2+4x-4y=0和x2+y2+2x-12=0的公共弦所在直線的方程為()A.x+2y﹣6=0 B.x﹣3y+5=0C.x﹣2y+6=0 D.x+3y﹣8=04.正方體的棱長(zhǎng)為,為側(cè)面內(nèi)動(dòng)點(diǎn),且滿足,則△面積的最小值為()A. B.C. D.5.命題:,的否定為()A., B.不存在,C., D.,6.離心率為,長(zhǎng)軸長(zhǎng)為6的橢圓的標(biāo)準(zhǔn)方程是A. B.或C. D.或7.如果,,…,是拋物線C:上的點(diǎn),它們的橫坐標(biāo)依次為,,…,,點(diǎn)F是拋物線C的焦點(diǎn).若=10,=10+n,則p等于()A.2 B.C. D.48.已知雙曲線的離心率為2,則()A.2 B.C. D.19.已知雙曲線的離心率為2,且與橢圓有相同的焦點(diǎn),則該雙曲線的漸近線方程為()A. B.C. D.10.丹麥數(shù)學(xué)家琴生(Jensen)是19世紀(jì)對(duì)數(shù)學(xué)分析作出卓越貢獻(xiàn)的巨人,特別是在函數(shù)的凸凹性與不等式方面留下了很多寶貴的成果.設(shè)函數(shù)在區(qū)間內(nèi)的導(dǎo)函數(shù)為,在區(qū)間內(nèi)的導(dǎo)函數(shù)為,在區(qū)間內(nèi)恒成立,則稱函數(shù)在區(qū)間內(nèi)為“凸函數(shù)”,則下列函數(shù)在其定義域內(nèi)是“凸函數(shù)”的是()A. B.C. D.11.已知命題,,則()A., B.,C., D.,12.我國(guó)古代銅錢蘊(yùn)含了“外圓內(nèi)方”“天地合一”的思想.現(xiàn)有一銅錢如圖,其中圓的半徑為r,正方形的邊長(zhǎng)為,若在圓內(nèi)隨即取點(diǎn),取自陰影部分的概率是p,則圓周率的值為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知平面的法向量分別為,,若,則的值為_(kāi)__14.已知數(shù)列則是這個(gè)數(shù)列的第________項(xiàng).15.若圓平分圓的周長(zhǎng),則直線被圓所截得的弦長(zhǎng)為_(kāi)___________16.定義在R上的函數(shù)滿足,其中為自然對(duì)數(shù)的底數(shù),,則滿足的a的取值范圍是__________.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)等差數(shù)列的前n項(xiàng)和為,已知(1)求的通項(xiàng)公式;(2)若,求n的最小值18.(12分)已知某學(xué)校的初中、高中年級(jí)的在校學(xué)生人數(shù)之比為9:11,該校為了解學(xué)生的課下做作業(yè)時(shí)間,用分層抽樣的方法在初中、高中年級(jí)的在校學(xué)生中共抽取了100名學(xué)生,調(diào)查了他們課下做作業(yè)的時(shí)間,并根據(jù)調(diào)查結(jié)果繪制了如下頻率分布直方圖:(1)在抽取的100名學(xué)生中,初中、高中年級(jí)各抽取的人數(shù)是多少?(2)根據(jù)頻率分布直方圖,估計(jì)學(xué)生做作業(yè)時(shí)間的中位數(shù)和平均時(shí)長(zhǎng)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);(3)另?yè)?jù)調(diào)查,這100人中做作業(yè)時(shí)間超過(guò)4小時(shí)的人中2人來(lái)自初中年級(jí),3人來(lái)自高中年級(jí),從中任選2人,恰好1人來(lái)自初中年級(jí),1人來(lái)自高中年級(jí)的概率是多少19.(12分)已知圓M:的圓心為M,圓N:的圓心為N,一動(dòng)圓與圓N內(nèi)切,與圓M外切,動(dòng)圓的圓心E的軌跡為曲線C(1)求曲線C的方程;(2)已知點(diǎn),直線l與曲線C交于A,B兩點(diǎn),且,直線l是否過(guò)定點(diǎn)?若過(guò)定點(diǎn),求出定點(diǎn)坐標(biāo);若不過(guò)定點(diǎn),請(qǐng)說(shuō)明理由20.(12分)如圖,在四棱錐中,平面ABCD,,,且,,.(1)求證:平面PAC;(2)已知點(diǎn)M是線段PD上的一點(diǎn),且,當(dāng)三棱錐的體積為1時(shí),求實(shí)數(shù)的值.21.(12分)在等差數(shù)列中,,前10項(xiàng)和(1)求列的通項(xiàng)公式;(2)若數(shù)列是首項(xiàng)為1,公比為2的等比數(shù)列,求的前8項(xiàng)和22.(10分)如圖,在四棱柱中,,,,四邊形為菱形,在平面ABCD內(nèi)的射影O恰好為AD的中點(diǎn),M為AB的中點(diǎn).(1)求證:平面;(2)求平面與平面夾角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】直接利用等差數(shù)列的求和公式及等差數(shù)列的性質(zhì)求解.【詳解】解:由題得.故選:B2、C【解析】由空間中直線與直線、直線與平面、平面與平面的位置關(guān)系,逐一核對(duì)四個(gè)選項(xiàng)得答案【詳解】解:對(duì)于A:若,則或,故A錯(cuò)誤;對(duì)于B:若,則或與相交,故B錯(cuò)誤;對(duì)于C:若,根據(jù)面面垂直的判定定理可得,故C正確;對(duì)于D:若則與平行、相交、或異面,故D錯(cuò)誤;故選:C3、C【解析】?jī)蓤A方程相減得出公共弦所在直線的方程.【詳解】?jī)蓤A方程相減得,即x﹣2y+6=0則公共弦所在直線的方程為x﹣2y+6=0故選:C4、B【解析】建立空間直角坐標(biāo)系如圖所示,設(shè)由,得出點(diǎn)的軌跡方程,由幾何性質(zhì)求得,再根據(jù)垂直關(guān)系求出△面積的最小值【詳解】以點(diǎn)為原點(diǎn),分別為軸建立空間直角坐標(biāo)系,如圖所示:則,,設(shè)所以,得,所以因?yàn)槠矫妫怨省髅娣e的最小值為故選:B5、D【解析】含有量詞的命題的否定方法:先改變量詞,然后再否定結(jié)論即可【詳解】解:命題:,的否定為:,故選:D6、B【解析】試題解析:當(dāng)焦點(diǎn)在x軸上:當(dāng)焦點(diǎn)在y軸上:考點(diǎn):本題考查橢圓的標(biāo)準(zhǔn)方程點(diǎn)評(píng):解決本題的關(guān)鍵是焦點(diǎn)位置不同方程不同7、A【解析】根據(jù)拋物線定義得個(gè)等式,相加后,利用已知條件可得結(jié)果.【詳解】拋物線C:的準(zhǔn)線為,根據(jù)拋物線的定義可知,,,,,所以,所以,所以,所以.故選:A【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:利用拋物線的定義解題是解題關(guān)鍵,屬于基礎(chǔ)題.8、D【解析】由雙曲線的性質(zhì),直接表示離心率,求.【詳解】由雙曲線方程可知,因?yàn)?,所以,解得:,又,所?故選:D【點(diǎn)睛】本題考查雙曲線基本性質(zhì),意在考查數(shù)形結(jié)合分析問(wèn)題和解決問(wèn)題能力,屬于中檔題型,一般求雙曲線離心率的方法:
直接法:直接求出,然后利用公式求解;2.公式法:,3.構(gòu)造法:根據(jù)條件,可構(gòu)造出的齊次方程,通過(guò)等式兩邊同時(shí)除以,進(jìn)而得到關(guān)于的方程.9、B【解析】求出焦點(diǎn),則可得出,即可求出漸近線方程.【詳解】由橢圓可得焦點(diǎn)為,則設(shè)雙曲線方程為,可得,則離心率,解得,則,所以漸近線方程為.故選:B.10、B【解析】根據(jù)基本初等函數(shù)的導(dǎo)函數(shù)公式求各函數(shù)二階導(dǎo)函數(shù),判斷其在定義域上是否恒有,即可知正確選項(xiàng).【詳解】A:,則,顯然定義域內(nèi)有正有負(fù),故不是“凸函數(shù)”;B:,則,故是“凸函數(shù)”;C:,則,故不是“凸函數(shù)”;D:,則,顯然定義域內(nèi)有正有負(fù),故不是“凸函數(shù)”;故選:B11、C【解析】利用全稱量詞命題的否定可得出結(jié)論.【詳解】命題為全稱量詞命題,該命題的否定為,.故選:C.12、B【解析】根據(jù)圓和正方形的面積公式結(jié)合幾何概型概率公式求解即可.【詳解】由可得故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由平面互相垂直可知其對(duì)應(yīng)的法向量也垂直,然后用空間向量垂直的坐標(biāo)運(yùn)算求解即可.【詳解】∵,∴平面的法向量互相垂直,∴,即,解得,故答案為:.14、12【解析】根據(jù)被開(kāi)方數(shù)的特點(diǎn)求出數(shù)列的通項(xiàng)公式,最后利用通項(xiàng)公式進(jìn)行求解即可.【詳解】數(shù)列中每一項(xiàng)被開(kāi)方數(shù)分別為:6,10,14,18,22,…,因此這些被開(kāi)方數(shù)是以6為首項(xiàng),4為公差的等差數(shù)列,設(shè)該等差數(shù)列為,其通項(xiàng)公式為:,設(shè)數(shù)列為,所以,于是有,故答案為:15、6【解析】根據(jù)兩圓的公共弦過(guò)圓的圓心即可獲解【詳解】?jī)蓤A相減得公共弦所在的直線方程為由題知兩圓的公共弦過(guò)圓的圓心,所以即,又,所以到直線的距離所以直線被圓所截得的弦長(zhǎng)為故答案為:616、【解析】設(shè),求出其導(dǎo)數(shù)結(jié)合條件得出在上單調(diào)遞減,將問(wèn)題轉(zhuǎn)化為求解,由的單調(diào)性可得答案.【詳解】設(shè),則由,則所以在上單調(diào)遞減.又由,即,即,所以故答案為:三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)12【解析】(1)設(shè)的公差為d,根據(jù)題意列出方程組,求得的值,即可求解;(2)利用等差數(shù)的求和公式,得到,結(jié)合的單調(diào)性,即可求解.【小問(wèn)1詳解】解:設(shè)的公差為d,因?yàn)椋傻?,解得,所以,即?shù)列的通項(xiàng)公式為【小問(wèn)2詳解】解:由,可得,根據(jù)二次函數(shù)的性質(zhì)且,可得單調(diào)遞增,因?yàn)?,所以?dāng)時(shí),,故n的最小值為1218、(1)初中、高中年級(jí)所抽取人數(shù)分別為45、55(2)2.375小時(shí),2.4小時(shí)(3)【解析】(1)依據(jù)分層抽樣的原則列方程即可解決;(2)依據(jù)頻率分布直方圖計(jì)算學(xué)生做作業(yè)時(shí)間的中位數(shù)和平均時(shí)長(zhǎng)即可;(3)依據(jù)古典概型即可求得恰好1人來(lái)自初中年級(jí),1人來(lái)自高中年級(jí)的概率.【小問(wèn)1詳解】設(shè)初中、高中年級(jí)所抽取人數(shù)分別為x、y,由已知可得,解得;【小問(wèn)2詳解】的頻率為,的頻率為,的頻率為因?yàn)椋?,所以中位?shù)在區(qū)間上,設(shè)為x,則,解得,所以學(xué)生做作業(yè)時(shí)間的中位數(shù)為2.375小時(shí);平均時(shí)長(zhǎng)為小時(shí).故估計(jì)學(xué)生做作業(yè)時(shí)間的中位數(shù)為2.375小時(shí),平均時(shí)長(zhǎng)為2.4小時(shí)【小問(wèn)3詳解】2人來(lái)自初中年級(jí),記為,,3人來(lái)自高中年級(jí),記為,,,則從中任選2人,所有可能結(jié)果有:,,,,,,,,,共10種,其中恰好1人來(lái)自初中年級(jí),1人來(lái)自高中年級(jí)有6種可能,所以恰好1人來(lái)自初中年級(jí),1人來(lái)自高中年級(jí)的概率為19、(1),;(2)過(guò),.【解析】(1)根據(jù)兩圓內(nèi)切和外切的性質(zhì),結(jié)合雙曲線的定義進(jìn)行求解即可;(2)設(shè)出直線l的方程與雙曲線的方程聯(lián)立,利用一元二次方程根與系數(shù)關(guān)系,結(jié)合平面向量數(shù)量積的坐標(biāo)表示公式進(jìn)行求解判斷即可.【小問(wèn)1詳解】設(shè)圓E的圓心為,半徑為r,則,,所以由雙曲線定義可知,E的軌跡是以M,N為焦點(diǎn)、實(shí)軸長(zhǎng)為6的雙曲線的右支,所以動(dòng)圓的圓心E的軌跡方程為,;【小問(wèn)2詳解】設(shè),,直線l的方程為由得,且,故又,所以又,,所以,即.又故或若,則直線l的方程為,過(guò)點(diǎn),與題意矛盾,所以,故,所以直線l的方程為,過(guò)點(diǎn)【點(diǎn)睛】關(guān)鍵點(diǎn)睛:利用一元二次方程根與系數(shù)的關(guān)系是解題的關(guān)鍵.20、(1)證明見(jiàn)解析(2)3【解析】(1)證明出,且,從而證明出線面垂直;(2)先用椎體體積公式求出,利用體積之比得到線段之比,從而得到的值.【小問(wèn)1詳解】證明:∵平面ABCD,且平面ABCD,∴.又因?yàn)椋?,∴四邊形ABCD為直角梯形.又因?yàn)椋?,易得,,∴,?又因?yàn)锳C,PA是平面PAC的兩條相交直線,∴平面PAC.【小問(wèn)2詳解】由(1)知且,∴.又∵平面ABCD,.又∵,∴,∴點(diǎn)M到平面ABC的距離為,∴,∴.21、(1);(2)347.【解析】(1)設(shè)等差數(shù)列的公差為,解方程組即得解;(2)先求出,再分組求和得解.【詳解】解:(1)設(shè)等差數(shù)列的公差為,則解得所以(2)由題意,,所以所以的前8項(xiàng)和為22、(1)證明見(jiàn)解析(2)【解析】(1)先證明,,即可證明平面;(2)建立空間直角坐標(biāo)系,利用向量法求解即可.【小問(wèn)1詳解】因?yàn)镺為在平面ABCD內(nèi)的射影,所以平面ABCD,因?yàn)槠矫鍭BCD,所以.如圖,連接BD,在中,.設(shè)CD的中點(diǎn)為P,連接
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 福建師范大學(xué)《員工培訓(xùn)》2023-2024學(xué)年第一學(xué)期期末試卷
- 福建師范大學(xué)《信號(hào)與系統(tǒng)實(shí)驗(yàn)》2021-2022學(xué)年第一學(xué)期期末試卷
- 福建師范大學(xué)《土壤地理學(xué)實(shí)驗(yàn)》2021-2022學(xué)年第一學(xué)期期末試卷
- 福建師范大學(xué)《基礎(chǔ)圖案》2021-2022學(xué)年第一學(xué)期期末試卷
- 天津市2016年中考化學(xué)真題(含答案)
- 電氣類考試題目
- 檔案銷毀清冊(cè)(封面)
- 2024屆云南省玉溪市一中高三下學(xué)期5月學(xué)情調(diào)研考試數(shù)學(xué)試題試卷
- 數(shù)據(jù)結(jié)構(gòu)與算法 課件 第三章棧和隊(duì)列
- 酶及原料可研報(bào)告2條
- 2024年電梯安全總監(jiān)安全員考試題參考
- 期中試卷(試題)2024-2025學(xué)年數(shù)學(xué)六年級(jí)上冊(cè)北師大版
- 2024精麻藥品培訓(xùn)知識(shí)試題庫(kù)及答案(完整版)
- 電影賞析綠皮書課件(內(nèi)容詳細(xì))
- 一般固廢處理協(xié)議合同書
- 蘇教版五年級(jí)數(shù)學(xué)上冊(cè)期中試卷(含答案)
- 《能力陷阱》讀書分享
- 三對(duì)三籃球賽記錄表
- 典型截面材料重量及抗彎截面系數(shù)計(jì)算表
- 衛(wèi)生院先診療、后付費(fèi)自查報(bào)告
- 部編人教版六年級(jí)道德與法治上冊(cè)全冊(cè)教學(xué)課件
評(píng)論
0/150
提交評(píng)論