版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2025屆福建省漳州第八中學(xué)高一數(shù)學(xué)第一學(xué)期期末檢測模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知集合則角α的終邊落在陰影處(包括邊界)的區(qū)域是()A. B.C. D.2.已知冪函數(shù)的圖象過點,則的值為A. B.C. D.3.若點關(guān)于直線的對稱點是,則直線在軸上的截距是A.1 B.2C.3 D.44.函數(shù)y=8x2-(m-1)x+m-7在區(qū)間(-∞,-]上單調(diào)遞減,則m的取值范圍為()A. B.C. D.5.已知函數(shù)在區(qū)間上單調(diào)遞減,則實數(shù)的取值范圍為()A. B.C. D.6.若函數(shù)在區(qū)間上單調(diào)遞增,則實數(shù)的取值范圍是()A. B.C. D.7.對于函數(shù),,“”是“的圖象既關(guān)于原點對稱又關(guān)于軸對稱”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件8.函數(shù)在上最大值與最小值之和是()A. B.C. D.9.心理學(xué)家有時用函數(shù)測定在時間t(單位:min)內(nèi)能夠記憶的量L,其中A表示需要記憶的量,k表示記憶率.假設(shè)一個學(xué)生需要記憶的量為200個單詞,此時L表示在時間t內(nèi)該生能夠記憶的單詞個數(shù).已知該生在5min內(nèi)能夠記憶20個單詞,則k的值約為(,)A.0.021 B.0.221C.0.461 D.0.66110.?dāng)?shù)學(xué)家歐拉在1765年提出定理:三角形的外心、重心、垂心依次位于同一直線上,且重心到外心的距離是重心到垂心距離的一半,這條直線后人稱之為三角形的歐拉線.已知的頂點,若其歐拉線方程為,則頂點C的坐標(biāo)是A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.在△ABC中,點滿足,過點的直線與,所在直線分別交于點,,若,,,則的最小值為___________.12.若不等式的解集為,則______,______13.某種商品在第天的銷售價格(單位:元)為,第x天的銷售量(單位:件)為,則第14天該商品的銷售收入為________元,在這30天中,該商品日銷售收入的最大值為________元.14.當(dāng)時,,則a的取值范圍是________.15.空間直角坐標(biāo)系中,點A(﹣1,0,1)到原點O的距離為_____16.已知,,則____________三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.假設(shè)你家訂了一份報紙,送報人可能在早上6點—8點之間把報紙送到你家,你每天離家去工作的時間在早上7點—9點之間.問:離家前不能看到報紙(稱事件)的概率是多少?(須有過程)18.已知的部分圖象如圖.(1)求函數(shù)的解析式;(2)求函數(shù)在上的單調(diào)增區(qū)間.19.已知正方體,(1)證明:平面;(2)求異面直線與所成的角20.如圖,在四棱錐中,是正方形,平面,,,,分別是,,的中點()求四棱錐的體積()求證:平面平面()在線段上確定一點,使平面,并給出證明21.已知集合,(1)當(dāng)時,求;(2)若,求a的取值范圍;
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】令,由此判斷出正確選項.【詳解】令,則,故B選項符合.故選:B【點睛】本小題主要考查用圖像表示角的范圍,考查終邊相同的角的概念,屬于基礎(chǔ)題.2、B【解析】利用冪函數(shù)圖象過點可以求出函數(shù)解析式,然后求出即可【詳解】設(shè)冪函數(shù)的表達式為,則,解得,所以,則.故答案為B.【點睛】本題考查了冪函數(shù),以及對數(shù)的運算,屬于基礎(chǔ)題3、D【解析】∵點A(1,1)關(guān)于直線y=kx+b的對稱點是B(﹣3,3),由中點坐標(biāo)公式得AB的中點坐標(biāo)為,代入y=kx+b得①直線AB得斜率為,則k=2.代入①得,.∴直線y=kx+b為,解得:y=4.∴直線y=kx+b在y軸上的截距是4.故選D.4、A【解析】求出函數(shù)的對稱軸,得到關(guān)于m的不等式,解出即可【詳解】函數(shù)的對稱軸是,若函數(shù)在區(qū)間上單調(diào)遞減,則,解得:m≥0,故選A【點睛】本題考查了二次函數(shù)的性質(zhì),熟練掌握二次函數(shù)的性質(zhì)是解題的關(guān)鍵5、A【解析】先由題意,求出函數(shù)的單調(diào)遞減區(qū)間,再由題中條件,列出不等式組求解,即可得出結(jié)果.【詳解】由題意,令,則,即函數(shù)的單調(diào)遞減區(qū)間為,因為函數(shù)在區(qū)間上單調(diào)遞減,所以,解得,所以,.故選:A.【點睛】關(guān)鍵點點睛:本題的關(guān)鍵是用不等式法求函數(shù)的單調(diào)遞減區(qū)間時,應(yīng)該令,且該函數(shù)的周期應(yīng)為,則.6、B【解析】根據(jù)二次函數(shù)的單調(diào)性可得出關(guān)于的不等式,即可得解.【詳解】因為函數(shù)在區(qū)間上單調(diào)遞增,則,解得.故選:B.7、C【解析】由函數(shù)奇偶性的定義求出的解析式,可得出結(jié)論.【詳解】若函數(shù)的定義域為,的圖象既關(guān)于原點對稱又關(guān)于軸對稱,則,可得,因此,“”是“的圖象既關(guān)于原點對稱又關(guān)于軸對稱”的充要條件故選:C.8、A【解析】直接利用的范圍求得函數(shù)的最值,即可求解.【詳解】∵,∴,∴,∴最大值與最小值之和為,故選:.9、A【解析】由題意得出,再取對數(shù)得出k的值.【詳解】由題意可知,所以,解得故選:A10、A【解析】設(shè)C的坐標(biāo),由重心坐標(biāo)公式求重心,代入歐拉線得方程,求出AB的垂直平分線,聯(lián)立歐拉線方程得三角形外心,外心到三角形兩頂點距離相等可得另一方程,兩方程聯(lián)立求得C點的坐標(biāo).【詳解】設(shè)C(m,n),由重心坐標(biāo)公式得重心為,代入歐拉線方程得:①AB的中點為,,所以AB的中垂線方程為聯(lián)立,解得所以三角形ABC的外心為,則,化簡得:②聯(lián)立①②得:或,當(dāng)時,BC重合,舍去,所以頂點C的坐標(biāo)是故選A.【點睛】本題主要考查了直線方程的各種形式,重心坐標(biāo)公式,屬于中檔題.二、填空題:本大題共6小題,每小題5分,共30分。11、3【解析】先利用條件找到,然后對減元,化為,利用基本不等式求最小值.【詳解】,,,三點共線,.則當(dāng)且僅當(dāng),即時等號成立.故答案為:3.【點睛】(1)在向量運算中:①構(gòu)造向量加、減法的三角形法則和平行四邊形法則;②樹立“基底”意識,利用基向量進行線性運算;(2)基本不等式求最值要注意應(yīng)用條件:“一正二定三相等”.12、①.②.【解析】由題設(shè)知:是的根,應(yīng)用根與系數(shù)關(guān)系即可求參數(shù)值.【詳解】由題設(shè),是的根,∴,即,.故答案為:,.13、①.448②.600【解析】銷售價格與銷售量相乘即得收入,對分段函數(shù),可分段求出最大值,然后比較.【詳解】由題意可得(元),即第14天該商品的銷售收入為448元.銷售收入,,即,.當(dāng)時,,故當(dāng)時,y取最大值,,當(dāng)時,易知,故當(dāng)時,該商品日銷售收入最大,最大值為600元.故答案為:448;600.【點睛】本題考查分段函數(shù)模型的應(yīng)用.根據(jù)所給函數(shù)模型列出函數(shù)解析式是基本方法.14、【解析】分類討論解一元二次不等式,然后確定參數(shù)范圍【詳解】,若,則或,此時時,不等式成立,若,則或,要滿足題意,則,即綜上,故答案為:15、【解析】由空間兩點的距離公式計算可得所求值.【詳解】點到原點的距離為,故答案為:.【點睛】本題考查空間兩點的距離公式的運用,考查運算能力,是一道基礎(chǔ)題.16、【解析】,,考點:三角恒等變換三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、.【解析】設(shè)送報人到達的時間為X,小王離家去工作的時間為Y,(X,Y)可以看成平面中的點,試驗的全部結(jié)果所構(gòu)成的區(qū)域為Ω={(x,y)|6≤X≤8,7≤Y≤9}一個正方形區(qū)域,求出其面積,事件A表示小王離家前不能看到報紙,所構(gòu)成的區(qū)域為A={(X,Y)|6≤X≤8,7≤Y≤9,X>Y}
求出其面積,根據(jù)幾何概型的概率公式解之即可;試題解析:如圖,設(shè)送報人到達的時間為,小王離家去工作的時間為.(,)可以看成平面中的點,試驗的全部結(jié)果所構(gòu)成的區(qū)域為一個正方形區(qū)域,面積為,事件表示小王離家前不能看到報紙,所構(gòu)成的區(qū)域為即圖中的陰影部分,面積為.這是一個幾何概型,所以.答:小王離家前不能看到報紙的概率是0.125.點睛:(1)當(dāng)試驗的結(jié)果構(gòu)成的區(qū)域為長度、面積、體積等時,應(yīng)考慮使用幾何概型求解(2)利用幾何概型求概率時,關(guān)鍵是試驗的全部結(jié)果構(gòu)成的區(qū)域和事件發(fā)生的區(qū)域的尋找,有時需要設(shè)出變量,在坐標(biāo)系中表示所需要的區(qū)域(3)幾何概型有兩個特點:一是無限性,二是等可能性.基本事件可以抽象為點,盡管這些點是無限的,但它們所占據(jù)的區(qū)域都是有限的,因此可用“比例解法”求解幾何概型的概率18、(1);(2)和.【解析】(1)由圖知:且可求,再由,結(jié)合已知求,寫出解析式即可.(2)由正弦函數(shù)的單調(diào)性,知上遞增,再結(jié)合給定區(qū)間,討論值確定其增區(qū)間.【詳解】(1)由圖知:且,∴.又,即,而,∴.綜上,.(2)∵,∴.當(dāng)時,;當(dāng)時,,又,∴函數(shù)在上的單調(diào)增區(qū)間為和.19、(1)證明見解析;(2)【解析】(1)證明,再根據(jù)線面平行的判定定理即可證明結(jié)論;(2)即為異面直線與所成的角,求出即可【詳解】(1)證:在正方體中,,且,∴四邊形為平行四邊形,∴,又∵平面,平面;∴平面;(2)解:∵,∴即為異面直線與所成的角,設(shè)正方體的邊長為,則易得,∴為等邊三角形,∴,故異面直線與所成的角為【點睛】本題主要考查線面平行的判定與異面直線所成的角,屬于基礎(chǔ)題20、(1)(2)見解析(3)當(dāng)為線段的中點時,滿足使平面【解析】(1)根據(jù)線面垂直確定高線,再根據(jù)錐體體積公式求體積(2)先尋找線線平行,根據(jù)線面平行判定定理得線面平行,最后根據(jù)面面平行判定定理得結(jié)論(3)由題意可得平面,即,取線段的中點,則有,而,根據(jù)線面垂直判定定理得平面試題解析:()解:∵平面,∴()證明:∵,分別是,的中點∴,由正方形,∴,又平面,∴平面,同理可得:,可得平面,又,∴平面平面()解:當(dāng)為線段中點時,滿足使平面,下面給出證明:取的中點,連接,,∵,∴四點,,,四點共面,由平面,∴,又,,∴平面,∴,又為等腰三角形,為斜邊中點,∴,又,∴平面,即平面點睛:(1)探索性問題通常用“肯定順推法”,將不確定性問題明朗化.其步驟為假設(shè)滿足條件的元素(點、直線、曲線或參數(shù))存在,用待定系數(shù)法設(shè)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 河北省保定市長城高級中學(xué)2025屆生物高二上期末考試模擬試題含解析
- 2025屆江蘇省南通市通州區(qū)高一數(shù)學(xué)第一學(xué)期期末聯(lián)考模擬試題含解析
- 云南省大理州2025屆高三生物第一學(xué)期期末檢測模擬試題含解析
- 2025屆廣西壯族自治區(qū)百色市田陽縣田陽高中高三英語第一學(xué)期期末復(fù)習(xí)檢測試題含解析
- 2025屆上海市嘉定區(qū)封浜高級中學(xué)高二數(shù)學(xué)第一學(xué)期期末聯(lián)考模擬試題含解析
- 2025屆湖南省重點中學(xué)數(shù)學(xué)高一上期末調(diào)研試題含解析
- 上海市市轄區(qū)(2024年-2025年小學(xué)五年級語文)部編版期中考試((上下)學(xué)期)試卷及答案
- 水利工程合同(2篇)
- 開展科協(xié)活動合同(2篇)
- 鄉(xiāng)村酒吧裝修合同樣本
- 地 理城鎮(zhèn)與鄉(xiāng)村(課件)2024-2025學(xué)年七年級地理上冊同步課堂(人教版2024)
- 職域行銷BBC模式開拓流程-企業(yè)客戶營銷技巧策略-人壽保險營銷實戰(zhàn)-培訓(xùn)課件
- 城建項目資金管理存在的問題及對策探析
- 重慶高校分類發(fā)展與結(jié)構(gòu)調(diào)整實證研究
- 干洗店規(guī)章制度
- 龍高級中學(xué)龐素微
- 浙江大學(xué)管理學(xué)院案例撰寫規(guī)范
- C++調(diào)試方法和技巧
- 醫(yī)院行政管理大部制改革的實踐
- 酵母菌及其在食品中的應(yīng)用
- 酒店質(zhì)檢表格(完整版)
評論
0/150
提交評論