版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
陜西省寧強縣天津高級中學2025屆高二上數(shù)學期末檢測模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.直線與直線的位置關系是()A.相交但不垂直 B.平行C.重合 D.垂直2.已知拋物線上一點到其焦點的距離為5,雙曲線的左頂點為A,若雙曲線的一條漸近線與直線AM平行,則實數(shù)n的值是()A. B.C. D.3.雙曲線的焦點到漸近線的距離為()A. B.2C. D.4.已知向量,,且與互相垂直,則k的值是().A.1 B.C. D.5.將上各點的縱坐標不變,橫坐標變?yōu)樵瓉淼?倍,得到曲線C,若直線l與曲線C交于A,B兩點,且AB中點坐標為M(1,),那么直線l的方程為()A. B.C. D.6.設,,,則,,大小關系是A. B.C. D.7.設的內角A,B,C的對邊分別為a,b,c,已知,,,則b等于()A. B.2C. D.48.已知函數(shù),,當時,不等式恒成立,則實數(shù)的取值范圍為()A. B.C. D.9.直線關于直線對稱的直線方程為()A. B.C. D.10.已知圓,若存在過點的直線與圓C相交于不同兩點A,B,且,則實數(shù)a的取值范圍是()A. B.C. D.11.已知向量,,則()A. B.C. D.12.“”是“”的A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.點到直線的距離為_______.14.如圖:雙曲線的左右焦點分別為,,過原點O的直線與雙曲線C相交于P,Q兩點,其中P在右支上,且,則的面積為___________.15.已知雙曲線的左,右焦點分別為,P是該雙曲線右支上一點,且(O為坐標原點),,則雙曲線C的離心率為__________16.已知點,則線段的垂直平分線的一般式方程為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)的圖象在點P(0,f(0))處的切線方程是(1)求a、b的值;(2)求函數(shù)的極值.18.(12分)已知數(shù)列滿足,.(1)求證:數(shù)列是等比數(shù)列;(2)求數(shù)列的通項公式及前項的和.19.(12分)直線:和:(1)若兩直線垂直,求m的值;(2)若兩直線平行,求平行線間的距離20.(12分)如圖,水平桌面上放置一個棱長為4的正方體的水槽,水面高度恰為正方體棱長的一半,在該正方體側面有一個小孔(小孔的大小忽略不計)E,E點到CD的距離為3,若該正方體水槽繞CD傾斜(CD始終在桌面上).(1)證明圖2中的水面也是平行四邊形;(2)當水恰好流出時,側面與桌面所成的角的大小.21.(12分)在棱長為1的正方體ABCD-A1B1C1D1中,求平面ACD1的一個法向量.22.(10分)已知橢圓C:的焦距為,點在C上(1)求C的方程;(2)過點的直線與C交于M,N兩點,點R是直線:上任意一點,設直線RM,RQ,RN的斜率分別為,,,若,,成等差數(shù)列,求的方程.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】把直線化簡后即可判斷.【詳解】直線可化為,所以直線與直線的位置關系是重合.故選:C2、C【解析】首先根據(jù)拋物線焦半徑公式得到,從而得到,再根據(jù)曲線的一條漸近線與直線AM平行,斜率相等求解即可.【詳解】由題知:,解得,拋物線.雙曲線的左頂點為,,因為雙曲線的一條漸近線與直線平行,所以,解得.故選:C3、A【解析】根據(jù)點到直線距離公式進行求解即可.【詳解】由雙曲線的標準方程可知:,該雙曲線的焦點坐標為:,雙曲線的漸近線方程為:,所以焦點到漸近線的距離為:,故選:A4、D【解析】利用向量的數(shù)量積為0可求的值.【詳解】因與互相垂直,故,故即,故.故選:D.5、A【解析】先根據(jù)題意求出曲線C的方程,然后利用點差法求出直線l的斜率,從而可求出直線方程【詳解】設點為曲線C上任一點,其在上對應在的點為,則,得,所以,所以曲線C的方程為,設,則,兩方程相減整理得,因為AB中點坐標為M(1,),所以,即,所以,所以,所以直線l的方程為,即,故選:A6、A【解析】構造函數(shù),根據(jù)的單調性可得(3),從而得到,,的大小關系【詳解】考查函數(shù),則,在上單調遞增,,(3),即,,故選:【點睛】本題考查了利用函數(shù)的單調性比較大小,考查了構造法和轉化思想,屬基礎題7、A【解析】由正弦定理求解即可.【詳解】因為,所以故選:A8、C【解析】由題意得出,構造函數(shù),可知函數(shù)在區(qū)間上單調遞增,可得出對任意的恒成立,利用參變量分離法可得出,利用導數(shù)求得函數(shù)在區(qū)間上的最大值,由此可求得實數(shù)的取值范圍.【詳解】函數(shù)的定義域為,當時,恒成立,即,構造函數(shù),則,所以,函數(shù)在區(qū)間上為增函數(shù),則對任意的恒成立,,令,其中,則.,所以函數(shù)在上單調遞減;又,所以.因此,實數(shù)的取值范圍是.故選:C.9、C【解析】先聯(lián)立方程得,再求得直線的點關于直線對稱點的坐標為,進而根據(jù)題意得所求直線過點,,進而得直線方程.【詳解】解:聯(lián)立方程得,即直線與直線的交點為設直線的點關于直線對稱點的坐標為,所以,解得所以直線關于直線對稱的直線過點,所以所求直線方程的斜率為,所以所求直線的方程為,即故選:C10、D【解析】根據(jù)圓的割線定理,結合圓的性質進行求解即可.【詳解】圓的圓心坐標為:,半徑,由圓的割線定理可知:,顯然有,或,因為,所以,于是有,因為,所以,而,或,所以,故選:D11、D【解析】按空間向量的坐標運算法則運算即可.【詳解】.故選:D.12、B【解析】因但二、填空題:本題共4小題,每小題5分,共20分。13、【解析】應用點線距離公式求點線距離.【詳解】由題設,點到距離為.故答案為:14、24【解析】利用雙曲線定義結合已知求出,,再利用雙曲線的對稱性計算作答.【詳解】依題意,,,又,解得,,則有,即,連接,如圖,因過原點O的直線與雙曲線C相交于P,Q兩點,由雙曲線的對稱性知,P,Q關于原點O對稱,因此,四邊形是平行四邊形,,所以的面積為24.故答案為:2415、【解析】由已知及向量數(shù)量積的幾何意義易知,根據(jù)雙曲線的性質可得,再由雙曲線的定義及勾股定理構造關于雙曲線參數(shù)的齊次方程求離心率.【詳解】∵,∴△為等腰三角形且,又,∴,∴.又,,∴,則,可得,∴雙曲線C的離心率為故答案為:.16、【解析】由中點坐標公式和斜率公式可得的中點和直線斜率,由垂直關系可得垂直平分線的斜率,由點斜式可得直線方程,化為一般式即可【詳解】由中點坐標公式可得,的中點為,可得直線的斜率為,由垂直關系可得其垂直平分線的斜率為,故可得所求直線的方程為:,化為一般式可得故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)答案見解析【解析】(1)求出曲線的斜率,切點坐標,求出函數(shù)的導數(shù),利用導函數(shù)值域斜率的關系,即可求出,(2)求出導函數(shù)的符號,判斷函數(shù)的單調性即可得到函數(shù)的極值【詳解】(1)因為函數(shù)的圖象在點P(0,f(0))處的切線方程是,所以切線斜率是,且,求得,即點又函數(shù),則所以依題意得解得(2)由(1)知所以令,解得或當,或;當,所以函數(shù)的單調遞增區(qū)間是,,單調遞減區(qū)間是所以當變化時,和變化情況如下表:0極大值極小值所以,18、(1)證明見解析;(2),.【解析】(1)證明出,即可證得結論成立;(2)由(1)的結論并確定數(shù)列的首項和公比,可求得數(shù)列的通項公式,再利用分組求和法可求得.【小問1詳解】證明:因為數(shù)列滿足,,則,且,則,,,以此類推可知,對任意的,,所以,,故數(shù)列為等比數(shù)列.【小問2詳解】解:由(1)可知,數(shù)列是首項為,公比為的等比數(shù)列,則,所以,,因此,.19、(1);(2)【解析】(1)由直線一般方程的垂直公式,即得解;(2)由直線一般方程的平行公式,求得,再由平行線的距離公式,即得解.【小問1詳解】∵兩直線垂直,∴,解得【小問2詳解】∵兩直線平行,∴,解得或1,經(jīng)過驗證時兩條直線重合,舍去.∴可得:直線:,:∴兩直線間的距離20、(1)證明見解析(2)【解析】(1)由水的體積得出,進而得出,,從而證明圖2中的水面也是平行四邊形;(2)在平面內,過點作,交于,由四邊形是平行四邊形,得出側面與桌面所成的角即側面與水面所成的角,再由直角三角形的邊角關系得出其夾角.【小問1詳解】由題意知,水的體積為,如圖所示,設正方體水槽傾斜后,水面分別與棱,,,交于,,,,則,水的體積為,,即,,故四邊形為平行四邊形,即,且又,,,四邊形為平行四邊形,即圖2中的水面也是平行四邊形;【小問2詳解】在平面內,過點作,交于,則四邊形是平行四邊形,,,側面與桌面所成的角即側面與水面所成的角,即側面與平面所成的角,即為所求,而,在中,,側面與桌面所成角的為21、【解析】建立空間直角坐標系,由向量法求法向量即可.【詳解】如圖,建立空間直角坐標系,則設平面ACD1的法向量.,又為平面ACD1的一個法向量,化簡得令x=1,得y=z=1.平面ACD1的一個法向量.【點睛】本題主要考查了求平面的法向量,屬于中檔題.22、(1)(2)【解析】(1)根據(jù)橢圓的焦距為,點在C上,由求解;(2)設,,,的斜率不存在時,則的方程為,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 護士大學生職業(yè)規(guī)劃
- 2025年南京c1貨運從業(yè)資格證考試題下載
- 2025年南陽貨運員初級考試題庫
- 《銀行授信方案》課件
- 校園安全人人有責班會
- 2025年臺州運輸從業(yè)資格證考試技巧
- 應聘銷售業(yè)務經(jīng)理管理
- 加工中心的編程教學課件
- 2025香港公司股份轉讓合同書
- 臨床護理帶教工作計劃
- 維生素B市場研究報告
- 狹義相對論(電動力學部分)
- 四川省廣安市2023年九年級上學期期末化學試題附答案
- 上海生煎包行業(yè)分析
- Flutter(從0到1構建大前端應用)
- 工廠生產管理培訓教材
- 2024中考道德與法治七年級上冊易混易錯知識點總結
- 2022年云南省昆明市中考語文真題答案詳解
- 2023定制衣柜銷售合同
- 2023房屋租賃合同wps正規(guī)版
- 國家開放大學期末機考理工英語3
評論
0/150
提交評論