版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025屆安徽省淮南五中高二數(shù)學(xué)第一學(xué)期期末聯(lián)考試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若過點(diǎn)(2,1)的圓與兩坐標(biāo)軸都相切,則圓心到直線的距離為()A. B.C. D.2.過點(diǎn)且與原點(diǎn)距離最大的直線方程是()A. B.C. D.3.在平面直角坐標(biāo)系xOy中,點(diǎn)(0,4)關(guān)于直線x-y+1=0的對(duì)稱點(diǎn)為()A.(-1,2) B.(2,-1)C.(1,3) D.(3,1)4.若變量x,y滿足約束條件,則目標(biāo)函數(shù)最大值為()A.1 B.-5C.-2 D.-75.已知橢圓的左焦點(diǎn)為,右頂點(diǎn)為,點(diǎn)在橢圓上,且軸,直線交軸于點(diǎn).若,則橢圓的離心率是A. B.C. D.6.下列曲線中,與雙曲線有相同漸近線是()A. B.C. D.7.已知函數(shù),則等于()A.0 B.2C. D.8.已知,則()A. B.1C. D.9.設(shè)函數(shù)在上可導(dǎo),則等于()A. B.C. D.以上都不對(duì)10.如圖,在平行六面體中,()A. B.C. D.11.已知橢圓+=1(a>b>0)的右焦點(diǎn)為F(3,0),過點(diǎn)F的直線交橢圓于A、B兩點(diǎn).若AB的中點(diǎn)坐標(biāo)為(1,-1),則E的方程為A.+=1 B.+=1C.+=1 D.+=112.已知橢圓的左右焦點(diǎn)分別為,,過C上的P作y軸的垂線,垂足為Q,若四邊形是菱形,則C的離心率為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.直線被圓所截得的弦的長(zhǎng)為_____14.已知直線,拋物線上一動(dòng)點(diǎn)到直線l的距離為d,則的最小值是______15.設(shè)直線的方向向量分別為,若,則實(shí)數(shù)m等于___________.16.已知雙曲線的兩條漸近線的夾角為,則_______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列滿足(1)求;(2)若,且數(shù)列的前n項(xiàng)和為,求證:18.(12分)如圖,已知圓C與y軸相切于點(diǎn),且被x軸正半軸分成的兩段圓弧長(zhǎng)之比為1∶2(1)求圓C的方程;(2)已知點(diǎn),是否存在弦被點(diǎn)P平分?若存在,求直線的方程;若不存在,請(qǐng)說明理由19.(12分)在平面直角坐標(biāo)系內(nèi),已知的三個(gè)頂點(diǎn)坐標(biāo)分別為(1)求邊的垂直平分線所在的直線的方程;(2)若面積為5,求點(diǎn)的坐標(biāo)20.(12分)2021年7月25日,在東京奧運(yùn)會(huì)自行車公路賽中,奧地利數(shù)學(xué)女博士安娜·基秣崔天以3小時(shí)52分45秒的成績(jī)獲得冠軍,震驚了世界!廣大網(wǎng)友驚呼“學(xué)好數(shù)理化,走遍天下都不怕”.某市對(duì)中學(xué)生的體能測(cè)試成績(jī)與數(shù)學(xué)測(cè)試成績(jī)進(jìn)行分析,并從中隨機(jī)抽取了200人進(jìn)行抽樣分析,得到下表(單位:人):體能一般體能優(yōu)秀合計(jì)數(shù)學(xué)一般5050100數(shù)學(xué)優(yōu)秀4060100合計(jì)90110200(1)根據(jù)以上數(shù)據(jù),能否在犯錯(cuò)誤的概率不超過0.10的前提下認(rèn)為“體能優(yōu)秀”還是“體能一般”與數(shù)學(xué)成績(jī)有關(guān)?(結(jié)果精確到小數(shù)點(diǎn)后兩位)(2)①現(xiàn)從抽取的數(shù)學(xué)優(yōu)秀的人中,按“體能優(yōu)秀”與“體能一般”這兩類進(jìn)行分層抽樣抽取10人,然后,再從這10人中隨機(jī)選出4人,求其中至少有2人是“體能優(yōu)秀”的概率;②將頻率視為概率,以樣本估計(jì)總體,從該市中學(xué)生中隨機(jī)抽取10人參加座談會(huì),記其中“體能優(yōu)秀”的人數(shù)為X,求X的數(shù)學(xué)期望和方差參考公式:,其中參考數(shù)據(jù):0.150.100.050.250.0102.0722.7063.8415.0246.63521.(12分)若函數(shù)在區(qū)間上的最大值為9,最小值為1.(1)求a,b的值;(2)若方程在上有兩個(gè)不同的解,求實(shí)數(shù)k的取值范圍.22.(10分)已知為各項(xiàng)均為正數(shù)的等比數(shù)列,且,(1)求數(shù)列的通項(xiàng)公式;(2)令,求數(shù)列前n項(xiàng)和
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】由題意可知圓心在第一象限,設(shè)圓心的坐標(biāo)為,可得圓的半徑為,寫出圓的標(biāo)準(zhǔn)方程,利用點(diǎn)在圓上,求得實(shí)數(shù)的值,利用點(diǎn)到直線的距離公式可求出圓心到直線的距離.【詳解】由于圓上的點(diǎn)在第一象限,若圓心不在第一象限,則圓與至少與一條坐標(biāo)軸相交,不合乎題意,所以圓心必在第一象限,設(shè)圓心的坐標(biāo)為,則圓的半徑為,圓的標(biāo)準(zhǔn)方程為.由題意可得,可得,解得或,所以圓心的坐標(biāo)為或,圓心到直線的距離均為;圓心到直線的距離均為圓心到直線的距離均為;所以,圓心到直線的距離為.故選:B.【點(diǎn)睛】本題考查圓心到直線距離的計(jì)算,求出圓的方程是解題的關(guān)鍵,考查計(jì)算能力,屬于中等題.2、A【解析】過點(diǎn)且與原點(diǎn)O距離最遠(yuǎn)的直線垂直于直線,再由點(diǎn)斜式求解即可【詳解】過點(diǎn)且與原點(diǎn)O距離最遠(yuǎn)的直垂直于直線,,∴過點(diǎn)且與原點(diǎn)O距離最遠(yuǎn)的直線的斜率為,∴過點(diǎn)且與原點(diǎn)O距離最遠(yuǎn)的直線方程為:,即.故選:A3、D【解析】設(shè)出點(diǎn)(0,4)關(guān)于直線的對(duì)稱點(diǎn)的坐標(biāo),根據(jù)題意列出方程組,解方程組即可【詳解】解:設(shè)點(diǎn)(0,4)關(guān)于直線x-y+1=0的對(duì)稱點(diǎn)是(a,b),則,解得:,故選:D4、A【解析】作出不等式組對(duì)應(yīng)的平面區(qū)域,利用目標(biāo)函數(shù)的幾何意義,進(jìn)行求最值即可【詳解】解:由得作出不等式組對(duì)應(yīng)的平面區(qū)域如圖(陰影部分平移直線,由圖象可知當(dāng)直線,過點(diǎn)時(shí)取得最大值,由,解得,所以代入目標(biāo)函數(shù),得,故選:A5、D【解析】由于BF⊥x軸,故,設(shè),由得,選D.考點(diǎn):橢圓的簡(jiǎn)單性質(zhì)6、B【解析】求出已知雙曲線的漸近線方程,逐一驗(yàn)證即可.【詳解】雙曲線的漸近線方程為,而雙曲線的漸近線方程為,雙曲線的漸近線方程為,雙曲線的漸近線方程為,雙曲線的漸近線方程為.故選:B7、D【解析】先通過誘導(dǎo)公式將函數(shù)化簡(jiǎn),進(jìn)而求出導(dǎo)函數(shù),然后算出答案.【詳解】由題意,,故選:D.8、B【解析】先根據(jù)共軛復(fù)數(shù)的定義可得,再根據(jù)復(fù)數(shù)的運(yùn)算法則即可求出【詳解】因?yàn)?,所以故選:B9、C【解析】根據(jù)目標(biāo)式,結(jié)合導(dǎo)數(shù)的定義即可得結(jié)果.【詳解】.故選:C10、B【解析】由空間向量的加法的平行四邊形法則和三角形法則,可得所求向量【詳解】連接,可得,又,所以故選:B.11、D【解析】設(shè)、,所以,運(yùn)用點(diǎn)差法,所以直線的斜率為,設(shè)直線方程為,聯(lián)立直線與橢圓的方程,所以;又因?yàn)椋獾?【考點(diǎn)定位】本題考查直線與圓錐曲線的關(guān)系,考查學(xué)生的化歸與轉(zhuǎn)化能力.12、C【解析】根據(jù)題意求出P點(diǎn)坐標(biāo),代入橢圓方程中,可整理得到關(guān)于a,c的等式,進(jìn)一步整理為關(guān)于e的方程,解得答案.【詳解】如圖示:由題意可知,因?yàn)樗倪呅问橇庑危?,則,所以P點(diǎn)坐標(biāo)為,將P點(diǎn)坐標(biāo)為代入得:,整理得,故,由于,解得,所以,故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】圓轉(zhuǎn)化為標(biāo)準(zhǔn)式方程,圓心到直線的距離為,圓的半徑為,因此所求弦長(zhǎng)為考點(diǎn):1.圓的方程;2.直線被圓截得的弦長(zhǎng)的求法;14、##【解析】作直線l,拋物線準(zhǔn)線且交y軸于A點(diǎn),根據(jù)拋物線定義有,進(jìn)而判斷目標(biāo)式最小時(shí)的位置關(guān)系,結(jié)合點(diǎn)線距離公式求最小值.【詳解】如下圖示:若直線l,拋物線準(zhǔn)線且交y軸于A點(diǎn),則,,由拋物線定義知:,則,所以,要使目標(biāo)式最小,即最小,當(dāng)共線時(shí),又,此時(shí).故答案為:.15、2【解析】根據(jù)向量垂直與數(shù)量積的等價(jià)關(guān)系,,計(jì)算即可.【詳解】因?yàn)?,則其方向向量,,解得.故答案為:2.16、或【解析】首先判斷漸近線的傾斜角,再求的值.【詳解】由條件可知雙曲線的其中一條漸近線方程是,因?yàn)閮蓷l漸近線的夾角是,所以直線的傾斜角是或,即或.故答案為:或三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)證明見解析【解析】(1)先求得,猜想,然后利用數(shù)學(xué)歸納法進(jìn)行證明.(2)利用放縮法證得結(jié)論成立.【小問1詳解】依題意,,,,猜想,下面用數(shù)學(xué)歸納法進(jìn)行證明:當(dāng)時(shí),結(jié)論成立,假設(shè)當(dāng)時(shí)結(jié)論成立,即,由,,所以當(dāng)時(shí),有,結(jié)論成立,所以當(dāng)時(shí),.【小問2詳解】由(1)得,且為單調(diào)遞增數(shù)列,所以.所以.18、(1).(2).【解析】(1)由已知得圓心C在直線上,設(shè)圓C與x軸的交點(diǎn)分別為E、F,則有,,圓心C的坐標(biāo)為(2,1),由此求得圓C的標(biāo)準(zhǔn)方程;(2)假設(shè)存在弦被點(diǎn)P平分,有,由此求得直線AB的斜率可得其方程再檢驗(yàn),直線AB與圓C是否相交即可.小問1詳解】解:因?yàn)閳AC與y軸相切于點(diǎn),所以圓心C在直線上,設(shè)圓C與x軸的交點(diǎn)分別為E、F,由圓C被x軸分成的兩段弧長(zhǎng)之比為2∶1,得,所以,圓心C的坐標(biāo)為(2,1),所以圓C的方程為;【小問2詳解】解:因?yàn)辄c(diǎn),有,所以點(diǎn)P在圓C的內(nèi)部,假設(shè)存在弦被點(diǎn)P平分,則,又,所以,所以直線AB的方程為,即,檢驗(yàn),圓心C到直線AB的距離為,所以直線AB與圓C相交,所以存在弦被點(diǎn)P平分,此時(shí)直線的方程為.19、(1);(2)或【解析】(1)由題意直線的斜率公式,兩直線垂直的性質(zhì),求出的斜率,再用點(diǎn)斜式求直線的方程(2)根據(jù)面積為5,求得點(diǎn)到直線的距離,再利用點(diǎn)到直線的距離公式,求得的值【詳解】解:(1),,的中點(diǎn)的坐標(biāo)為,又設(shè)邊的垂直平分線所在的直線的斜率為則,可得的方程為,即邊的垂直平分線所在的直線的方程(2)邊所在的直線方程為設(shè)邊上的高為即點(diǎn)到直線的距離為且解得解得或,點(diǎn)的坐標(biāo)為或20、(1)不能,理由見解析;(2)①,②,【解析】(1)運(yùn)用公式求出,比較得出結(jié)論.(2)①先用分層抽樣得到“體能優(yōu)秀”與“體能一般”的人數(shù),再利用公式計(jì)算至少有2人是“體能優(yōu)秀”的概率.②根據(jù)已知條件知此分布列為二項(xiàng)分布,故利用數(shù)學(xué)期望和方差的公式即可求出答案【小問1詳解】由表格的數(shù)據(jù)可得,,故不能在犯錯(cuò)誤的概率不超過0.10的前提下認(rèn)為“體能優(yōu)秀”還是“體能一般”與數(shù)學(xué)成績(jī)有關(guān).【小問2詳解】①在數(shù)學(xué)優(yōu)秀的人群中,“體能優(yōu)秀”與“體能一般”的比例為“體能一般”的人數(shù)為,“體能優(yōu)秀”的人數(shù)為故再從這10人中隨機(jī)選出4人,其中至少有2人是“體能優(yōu)秀”的概率為.②由題意可得,隨機(jī)抽取一人“體能優(yōu)秀”的概率為,且故,21、(1)(2)【解析】(1)令
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年小學(xué)班主任個(gè)人工作總結(jié)標(biāo)準(zhǔn)范文(二篇)
- 2024年小單位的車輛管理制度模版(三篇)
- 2024年小學(xué)生暑假計(jì)劃書例文(二篇)
- 2024年工會(huì)審查制度例文(四篇)
- 2024年幼兒園小班家長(zhǎng)工作計(jì)劃模版(三篇)
- 2024年小學(xué)教研活動(dòng)總結(jié)參考樣本(二篇)
- 2024年學(xué)校財(cái)產(chǎn)管理制度范本(二篇)
- 2024年小學(xué)教學(xué)工作計(jì)劃例文(四篇)
- 2024年大學(xué)生個(gè)人學(xué)習(xí)計(jì)劃范文(三篇)
- 2024年客房服務(wù)員年終個(gè)人總結(jié)范文(四篇)
- 設(shè)立招投標(biāo)代理公司可行性研究報(bào)告
- 小學(xué)一年級(jí)禁毒教育
- PCBA工藝管制制程稽查表
- 小學(xué)書法大賽評(píng)價(jià)準(zhǔn)則與打分表
- 《朱蘭質(zhì)量手冊(cè)》課件
- 2024年中煤集團(tuán)招聘筆試參考題庫含答案解析
- 幼兒保育學(xué)前教育專業(yè)教師教學(xué)創(chuàng)新團(tuán)隊(duì)建設(shè)方案
- 2023年全球瘧疾報(bào)告
- 15D500-15D505 防雷與接地圖集(合訂本)
- 江蘇省徐州市2023-2024學(xué)年部編版八年級(jí)上學(xué)期期中歷史試題
- 檔案移交目錄表
評(píng)論
0/150
提交評(píng)論