四川省眉山市仁壽縣鏵強中學2025屆數學高二上期末質量檢測試題含解析_第1頁
四川省眉山市仁壽縣鏵強中學2025屆數學高二上期末質量檢測試題含解析_第2頁
四川省眉山市仁壽縣鏵強中學2025屆數學高二上期末質量檢測試題含解析_第3頁
四川省眉山市仁壽縣鏵強中學2025屆數學高二上期末質量檢測試題含解析_第4頁
四川省眉山市仁壽縣鏵強中學2025屆數學高二上期末質量檢測試題含解析_第5頁
已閱讀5頁,還剩11頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

四川省眉山市仁壽縣鏵強中學2025屆數學高二上期末質量檢測試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖是正方體的平面展開圖,在這個正方體中①與平行;②與是異面直線;③與成60°角;④與是異面直線以上四個結論中,正確結論的序號是A.①②③ B.②④C.③④ D.②③④2.古希臘數學家歐幾里得在《幾何原本》中描述了圓錐曲線共性,并給出了圓錐曲線的統(tǒng)一定義,只可惜對這一定義歐幾里得沒有給出證明.經過了500年,到了3世紀,希臘數學家帕普斯在他的著作《數學匯篇》中,完善了歐幾里得關于圓錐曲線的統(tǒng)一定義,并對這一定義進行了證明.他指出,到定點的距離與到定直線的距離的比是常數的點的軌跡叫做圓錐曲線;當時,軌跡為橢圓;當時,軌跡為拋物線;當時,軌跡為雙曲線.現有方程表示的曲線是雙曲線,則的取值范圍為()A. B.C. D.3.通過隨機詢問110名不同的大學生是否愛好某項運動,得到如下的列聯(lián)表:男女總計愛好402060不愛好203050總計6050110由附表:0.0500.0100.0013.8416.63510.828參照附表,得到的正確結論是()A.有99%以上的把握認為“愛好該項運動與性別有關”B.有99%以上的把握認為“愛好該項運動與性別無關”C.在犯錯誤的概率不超過0.1%的前提下,認為“愛好該項運動與性別有關”D.在犯錯誤的概率不超過0.1%的前提下,認為“愛好該項運動與性別無關”4.已知平面,的法向量分別為,,且,則()A. B.C. D.5.設雙曲線的左、右頂點分別為、,左、右焦點分別為、,以為直徑的圓與雙曲線左支的一個交點為若以為直徑的圓與直線相切,則的面積為()A. B.C. D.6.已知函數在處取得極值,則()A. B.C. D.7.已知橢圓上的一點到橢圓一個焦點的距離為3,則點到另一焦點的距離為()A.1 B.3C.5 D.78.已知雙曲線的左、右焦點分別為,點在的左支上,過點作的一條漸近線的垂線,垂足為,則的最小值為()A. B.C. D.9.如圖,空間四邊形OABC中,,,,點M在上,且滿足,點N為BC的中點,則()A. B.C. D.10.由下面的條件一定能得出為銳角三角形的是()A. B.C. D.11.化學中,將構成粒子(原子、離子或分子)在空間按一定規(guī)律呈周期性重復排列構成的固體物質稱為晶體.在結構化學中,可將晶體結構截分為一個個包含等同內容的基本單位,這個基本單位叫做晶胞.已知鈣、鈦、氧可以形成如圖所示的立方體晶胞(其中Ti原子位于晶胞的中心,Ca原子均在頂點位置,O原子位于棱的中點).則圖中原子連線BF與所成角的余弦值為()A. B.C. D.12.拋物線的準線方程是A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.過點作圓的切線l,直線與l平行,則直線l過定點_________,與l間的距離為____________14.已知圓關于直線對稱,則________15.已知等比數列滿足,則_________16.過拋物線的焦點F作斜率大于0的直線l交拋物線于A,B兩點(A在B的上方),且l與準線交于點C,若,則_________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知拋物線C:上一點到焦點F的距離為2(1)求實數p的值;(2)若直線l過C的焦點,與拋物線交于A,B兩點,且,求直線l的方程18.(12分)中國共產黨建黨100周年華誕之際,某高校積極響應黨和國家的號召,通過“增強防疫意識,激發(fā)愛國情懷”知識競賽活動,來回顧中國共產黨從成立到發(fā)展壯大的心路歷程,表達對建黨100周年以來的豐功偉績的傳頌.教務處為了解學生對相關知識的掌握情況,隨機抽取了100名學生的競賽成績,并以此為樣本繪制了如下樣本頻率分布直方圖(1)求值并估計中位數所在區(qū)間(2)需要從參賽選手中選出6人代表學校參與省里的此類比賽,你認為怎么選最合理,并說明理由19.(12分)在空間直角坐標系Oxyz中,O為原點,已知點,,,設向量,.(1)求與夾角的余弦值;(2)若與互相垂直,求實數k的值.20.(12分)已知各項均為正數的等差數列中,,且,,構成等比數列的前三項(1)求數列,的通項公式;(2)求數列的前項和21.(12分)已知點F為拋物線:()的焦點,點在拋物線上且在x軸上方,.(1)求拋物線的方程;(2)已知直線與曲線交于A,B兩點(點A,B與點P不重合),直線PA與x軸、y軸分別交于C、D兩點,直線PB與x軸、y軸分別交于M、N兩點,當四邊形CDMN的面積最小時,求直線l的方程.22.(10分)已知圓的圓心在第一象限內,圓關于直線對稱,與軸相切,被直線截得的弦長為.(1)求圓的方程;(2)若點,求過點的圓的切線方程.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】根據平面展開圖可得原正方體,根據各點的分布逐項判斷可得正確的選項.【詳解】由平面展開圖可得原正方體如圖所示:由圖可得:為異面直線,與不是異面直線,是異面直線,故①②錯誤,④正確.連接,則為等邊三角形,而,故或其補角為與所成的角,因為,故與所成的角為,故③正確.綜上,正確命題的序號為:③④.故選:C.【點睛】本題考查正方體的平面展開圖,注意展開圖中的點與正方體中的頂點的對應關系,本題屬于容易題.2、C【解析】對方程進行化簡可得雙曲線上一點到定點與定直線之比為常數,進而可得結果.【詳解】已知方程可以變形為,即,∴其表示雙曲線上一點到定點與定直線之比為常數,又由,可得,故選:C.3、A【解析】由,而,故由獨立性檢驗的意義可知選A4、D【解析】由題得,解方程即得解.【詳解】解:因為,所以所以,所以,所以.故選:D5、C【解析】據三角形中位線可得;再由雙曲線的定義求出,進而求出的面積【詳解】雙曲線的方程為:,,設以為直徑的圓與直線相切與點,則,且,,∥.又為的中點,,又,,的面積為:.故選:C6、B【解析】根據極值點處導函數為零可求解.【詳解】因為,則,由題意可知.經檢驗滿足題意故選:B7、D【解析】由橢圓的定義可以直接求得點到另一焦點的距離.【詳解】設橢圓的左、右焦點分別為、,由已知條件得,由橢圓定義得,其中,則.故選:.8、D【解析】利用雙曲線定義可得到,將的最小值變?yōu)榈淖钚≈祮栴},數形結合得解.【詳解】由題意得,故,如圖所示:到漸近線的距離,則,當且僅當,,三點共線時取等號,∴的最小值為.故選:D9、B【解析】由空間向量的線性運算求解【詳解】由題意,又,,,∴,故選:B10、D【解析】對于A,兩邊平方得,由得,即為鈍角;對于B,由正弦定理求出,進而求出,可得結果;對于C,根據平方關系將余弦化為正弦,用正弦定理可將角轉化為邊,進而可得的值,從而作出判斷;對于D,由可得,推出,,,故可知三個內角均為銳角【詳解】解:對于A,由,兩邊平方整理得,,因為,所以,所以,所以,所以為鈍角三角形,故A不正確;對于B,由,得,所以,因為,所以,所以或,所以或,所以為直角三角形或鈍角三角形,故B不正確;對于C,因為,所以,即,由正弦定理得,由余弦定理得,因為,所以,故三角形為鈍角三角形,C不正確;對于D,由可得,因為中最多只有一個鈍角,所以,,中最多只有一個為負數,所以,,,所以中三個內角都為銳角,所以為銳角三角形,故D正確;故選:D11、C【解析】如圖所示,以為坐標原點,所在的直線分別為軸,建立直角坐標系,設立方體的棱長為,求出的值,即可得到答案;【詳解】如圖所示,以為坐標原點,所在的直線分別為軸,建立直角坐標系,設立方體的棱長為,則,,,,連線與所成角的余弦值為故選:C.12、C【解析】根據拋物線的概念,可得準線方程為二、填空題:本題共4小題,每小題5分,共20分。13、①.②.##2.4【解析】利用直線與平行,結合切線的性質求出切線的方程,即可確定定點坐標,再利用兩條平行線間的距離公式求兩線距離.【詳解】由題意,直線斜率,設直線的方程為,即∴直線l過定點,由與圓相切,得,解得,∴的方程為,的方程為,則兩直線間的距離為故答案為:;.14、1【解析】根據題意,圓心在直線上,進而求得答案.【詳解】由題意,圓心在直線上,則.故答案為:1.15、84【解析】設公比為q,求出,再由通項公式代入可得結論【詳解】設公比為q,則,解得所以故答案為:8416、2【解析】分別過A,B作準線的垂線,垂足分別為,,由可求.【詳解】分別過A,B作準線的垂線,垂足分別為,,設,,則,∴,∴.故答案為:2.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)2(2)或【解析】(1)根據拋物線上的點到焦點與準線的距離相等可得到結果(2)通過聯(lián)立拋物線與直線方程利用韋達定理求解關系式即可得到結果【小問1詳解】拋物線焦點為,準線方程為,因為點到焦點F距離為2,所以,解得【小問2詳解】拋物線C的焦點坐標為,當斜率不存在時,可得不滿足題意,當斜率存在時,設直線l的方程為聯(lián)立方程,得,顯然,設,,則,所以,解得所以直線l的方程為或18、(1);中位數所在區(qū)間(2)選90分以上的人去參賽;答案見解析【解析】(1)根據頻率分布直方圖中,所有小矩形面積和為1,即可求得a值,根據各組的頻率,即可分析中位數所在區(qū)間.(2)計算可得之間共有6人,滿足題意,分析即可得答案.【小問1詳解】,解得成績在區(qū)間上的頻率為,,所以中位數所在區(qū)間,【小問2詳解】選成績最好的同學去參賽,分數在之間共有人,所以選90分以上的人去參賽.(其它方案如果合理也可以給分)19、(1)(2)【解析】(1)由向量的坐標先求出,,,由向量的夾角公式可得答案.(2)由題意可得,從而求出參數的值【小問1詳解】由題,,,故,,,所以故與夾角余弦值為.【小問2詳解】由與的互相垂直知,,,即20、(1);(2)【解析】(1)設等差數列公差為d,利用基本量代換列方程組求出的通項公式,進而求出的首項和公比,即可求出的通項公式;(2)利用分組求和法直接求和.【小問1詳解】設等差數列的公差為d,則由已知得:,即,又,解得或(舍去),所以.,又,,,;【小問2詳解】,.21、(1);(2)或.【解析】(1)根據給定條件結合拋物線定義求出p即可作答.(2)聯(lián)立直線l與拋物線的方程,用點A,B坐標表示出點C,D,M,N的坐標,列出四邊形CDMN面積的函數關系,借助均值不等式計算得解.【小問1詳解】拋物線的準線:,由拋物線定義得,解得,所以拋物線的方程為.【小問2詳解】因為點在上,且,則,即,依題意,,設,,由消去并整理得,則有,,直線PA的斜率是,方程為,令,則,令,則,即點C,點D,同理點M,點N,則,,四邊形的面積有:,當且僅當,即時取“=”,所以當時四邊形CDMN的面積最小值為4,直線l的方程為或.22、(1)(2)或【解析】(1

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論