吉林省榆樹市第一高級中學2025屆高二上數(shù)學期末綜合測試模擬試題含解析_第1頁
吉林省榆樹市第一高級中學2025屆高二上數(shù)學期末綜合測試模擬試題含解析_第2頁
吉林省榆樹市第一高級中學2025屆高二上數(shù)學期末綜合測試模擬試題含解析_第3頁
吉林省榆樹市第一高級中學2025屆高二上數(shù)學期末綜合測試模擬試題含解析_第4頁
吉林省榆樹市第一高級中學2025屆高二上數(shù)學期末綜合測試模擬試題含解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

吉林省榆樹市第一高級中學2025屆高二上數(shù)學期末綜合測試模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設(shè)是空間一定點,為空間內(nèi)任一非零向量,滿足條件的點構(gòu)成的圖形是()A.圓 B.直線C.平面 D.線段2.直線的傾斜角是()A. B.C. D.3.函數(shù)的定義域為,其導函數(shù)的圖像如圖所示,則函數(shù)極值點的個數(shù)為()A.2 B.3C.4 D.54.曲線的一個焦點F到兩條漸近線的垂線段分別為FA,F(xiàn)B,O為坐標原點,若四邊形OAFB是菱形,則雙曲線C的離心率等于()A. B.C.2 D.5.等比數(shù)列的前項和為,若,則()A. B.8C.1或 D.或6.設(shè)是等比數(shù)列,則“對于任意的正整數(shù)n,都有”是“是嚴格遞增數(shù)列”()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件7.如圖,在正方體中,點E是上底面的中心,則異面直線與所成角的余弦值為()A. B.C. D.8.若在1和16中間插入3個數(shù),使這5個數(shù)成等比數(shù)列,則公比為()A. B.2C. D.49.圓x2+y2-4=0與圓x2+y2-4x+4y-12=0公共弦所在直線方程為()A. B.C. D.10.已知雙曲線C:的漸近線方程是,則m=()A.3 B.6C.9 D.11.過點且與橢圓有相同焦點的雙曲線方程為()A B.C. D.12.若,都為正實數(shù),,則的最大值是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖所示,高爾頓釘板是一個關(guān)于概率的模型,每一黑點表示釘在板上的一顆釘子,它們彼此的距離均相等,上一層的每一顆的水平位置恰好位于下一層的兩顆正中間.小球每次下落時,將隨機的向兩邊等概率的落下.當有大量的小球都落下時,最終在釘板下面不同位置收集到小球.現(xiàn)有5個小球從正上方落下,則恰有3個小球落到2號位置的概率是______14.一個四面體有五條棱長均為2,則該四面體的體積最大值為_______15.圓和圓的公切線的條數(shù)為______16.已知數(shù)列是遞增等比數(shù)列,,則數(shù)列的前項和等于.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標系中,已知.(1)求直線的方程;(2)平面內(nèi)的動點滿足,到點與點距離的平方和為24,求動點的軌跡方程.18.(12分)某工廠修建一個長方體無蓋蓄水池,其容積為4800立方米,深度為3米.池底每平方米的造價為150元,池壁每平方米的造價為120元.設(shè)池底長方形長為x米(1)求底面積,并用含x的表達式表示池壁面積;(2)怎樣設(shè)計水池能使總造價最低?最低造價是多少?19.(12分)如圖,在正四棱柱中,,,點在棱上,且平面(1)求的值;(2)若,求二面角的余弦值20.(12分)已知橢圓的右頂點為,上頂點為.離心率為,.(1)求橢圓的標準方程;(2)若,是橢圓上異于長軸端點的兩點(斜率不為0),已知直線,且,垂足為,垂足為,若,且的面積是面積的5倍,求面積的最大值.21.(12分)如圖,已知四棱臺的上、下底面分別是邊長為2和4的正方形,,且底面,點分別在棱、上·(1)若P是的中點,證明:;(2)若平面,二面角的余弦值為,求四面體的體積22.(10分)2021年11月初某市出現(xiàn)新冠病毒感染者,該市教育局部署了“停課不停學”的行動,老師們立即開展了線上教學.某中學為了解教學效果,于11月30日復課第一天安排了測試,數(shù)學教師為了調(diào)查高二年級學生這次測試的數(shù)學成績與每天在線學習數(shù)學的時長之間的相關(guān)關(guān)系,對在校高二學生隨機抽取45名進行調(diào)查,了解到其中有25人每天在線學習數(shù)學的時長不超過1小時,并得到如下的統(tǒng)計圖:(1)根據(jù)統(tǒng)計圖填寫下面列聯(lián)表,是否有95%的把握認為“高二學生的這次摸底考試數(shù)學成績與其每天在線學習數(shù)學的時長有關(guān)”;數(shù)學成績不超過120分數(shù)學成績超過120分總計每天在線學習數(shù)學的時長不超過1小時25每天在線學習數(shù)學的時長超過1小時總計45(2)從被抽查的,且這次數(shù)學成績超過120分的學生中,按分層抽樣的方法抽取5名,再從這5名同學中隨機抽取2名,求這兩名同學中至多有一名每天在線學習數(shù)學的時長超過1小時的概率附:,其中.參考數(shù)據(jù):0.1000.0500.0100.0012.7063.8416.63510.828

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】根據(jù)法向量的定義可判斷出點所構(gòu)成的圖形.【詳解】是空間一定點,為空間內(nèi)任一非零向量,滿足條件,所以,構(gòu)成的圖形是經(jīng)過點,且以為法向量的平面.故選:C.【點睛】本題考查空間中動點的軌跡,考查了法向量定義的理解,屬于基礎(chǔ)題.2、A【解析】將直線方程化為斜截式,由此確定斜率;根據(jù)斜率和傾斜角關(guān)系可得結(jié)果.【詳解】設(shè)直線的傾斜角為,則,由得:,則斜率,.故選:A.3、C【解析】根據(jù)給定的導函數(shù)的圖象,結(jié)合函數(shù)的極值的定義,即可求解.【詳解】如圖所示,設(shè)導函數(shù)的圖象與軸的交點分別為,根據(jù)函數(shù)的極值的定義可知在該點處的左右兩側(cè)的導數(shù)符號相反,可得為函數(shù)的極大值點,為函數(shù)的極小值點,所以函數(shù)極值點的個數(shù)為4個.故選:C.4、A【解析】依題意可得為正方形,即可得到,從而得到雙曲線的漸近線為,即可求出雙曲線的離心率;【詳解】解:依題意,,且四邊形為菱形,所以為正方形,所以,即雙曲線的漸近線為,即,所以;故選:A5、C【解析】根據(jù)等比數(shù)列的前項和公式及等比數(shù)列通項公式即可求解.【詳解】設(shè)等比數(shù)列的公比為,則因為,所以,即,解得或,所以或.故選:C.6、C【解析】根據(jù)嚴格遞增數(shù)列定義可判斷必要性,分類討論可判斷充分性.【詳解】若是嚴格遞增數(shù)列,顯然,所以“對于任意的正整數(shù)n,都有”是“是嚴格遞增數(shù)列”必要條件;對任意的正整數(shù)n都成立,所以中不可能同時含正項和負項,,即,或,即,當時,有,即,是嚴格遞增數(shù)列,當時,有,即,是嚴格遞增數(shù)列,所以“對于任意的正整數(shù)n,都有”是“是嚴格遞增數(shù)列”充分條件故選:C7、B【解析】建立空間直角坐標系,利用向量夾角求解.【詳解】以為原點,為軸正方向建立空間直角坐標系如圖所示,設(shè)正方體棱長為2,所以,所以異面直線與所成角的余弦值為.故選:B8、A【解析】根據(jù)等比數(shù)列的通項得:,從而可求出.【詳解】解:成等比數(shù)列,∴根據(jù)等比數(shù)列的通項得:,,故選:A.9、B【解析】兩圓的方程消掉二次項后的二元一次方程即為公共弦所在直線方程.【詳解】由x2+y2-4=0與x2+y2-4x+4y-12=0兩式相減得:,即.故選:B10、C【解析】根據(jù)雙曲線的漸近線求得的值.【詳解】依題意可知,雙曲線的漸近線為,所以.故選:C11、D【解析】設(shè)雙曲線的方程為,再代點解方程即得解.【詳解】解:由得,所以橢圓的焦點為.設(shè)雙曲線的方程為,因為雙曲線過點,所以.所以雙曲線的方程為.故選:D12、B【解析】由基本不等式,結(jié)合題中條件,直接求解,即可得出結(jié)果.【詳解】因為,都為正實數(shù),,所以,當且僅當,即時,取最大值.故選:D二、填空題:本題共4小題,每小題5分,共20分。13、【解析】先研究一個小球從正上方落下的情況,從而可求出一個小球從正上方落下落到2號位置的概率,進而可求出5個小球從正上方落下,則恰有3個小球落到2號位置的概率【詳解】如圖所示,先研究一個小球從正上方落下的情況,11,12,13,14指小球第2層到第3層的線路圖,以此類推,小球所有的路線情況如下:01-11-21-31,01-11-21-32,01-11-22-33,01-11-22-34,01-12-23-33,01-12-23-34,01-12-24-35,01-12-24-36,02-14-26-38,02-14-26-37,02-14-25-35,02-14-25-36,02-13-24-36,02-13-24-35,02-13-23-34,02-13-23-33,共16種情況,其中落入2號位置的有4種,所以每個球落入2號位置的概率為,所以5個小球從正上方落下,則恰有3個小球落到2號位置的概率為,故答案為:14、1【解析】由已知中一個四面體有五條棱長都等于2,易得該四面體必然有兩個面為等邊三角形,根據(jù)棱錐的幾何特征,分析出當這兩個平面垂直時,該四面體的體積最大,將相關(guān)幾何量代入棱錐體積公式,即可得到答案【詳解】一個四面體有五條棱長都等于2,如下圖:設(shè)除PC外的棱均為2,設(shè)P到平面ABC距離為h,則三棱錐的體積V=,∵是定值,∴當P到平面ABC距離h最大時,三棱錐體積最大,故當平面PAB⊥平面ABC時,三棱錐體積最大,此時h為等邊三角形PAB的AB邊上的高,則h,故三棱錐體積的最大值為:故答案為:115、3【解析】判斷出兩個圓的位置關(guān)系,由此確定公切線的條數(shù).內(nèi)含關(guān)系0條公切線,內(nèi)切關(guān)系1條公切線,相交關(guān)系2條公切線,外切關(guān)系3條公切線,外離關(guān)系4條公切線。【詳解】由題知圓:的圓心,半徑,圓:的圓心,半徑,所以,,所以兩圓外切,所以兩圓共有3條公切線.故答案為:316、【解析】由題意,,解得或者,而數(shù)列是遞增的等比數(shù)列,所以,即,所以,因而數(shù)列的前項和,故答案為.考點:1.等比數(shù)列的性質(zhì);2.等比數(shù)列的前項和公式.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)結(jié)合點斜式求得直線的方程.(2)設(shè),根據(jù)已知條件列方程,化簡求得的軌跡方程.【小問1詳解】,于是直線的方程為,即【小問2詳解】設(shè)動點,于是,代入坐標得,化簡得,于是動點的軌跡方程為18、(1)1600,(平方米);(2)池底設(shè)計為邊長40米的正方形時總造價最低,最低造價為268800元.【解析】(1)根據(jù)題意,由于修建一個長方體無蓋蓄水池,其容積為4800立方米,深度為3米可得底面積為1600,池壁面積s=.(2)同時池底每平方米的造價為150元,池壁每平方米的造價為120元設(shè)池底長方形長為x米,則可知總造價s=,x=40時,則.故可知當x=40時,則有可使得總造價最低,最低造價是268800元.考點:不等式求解最值點評:主要是考查了不等式求解最值的運用,屬于基礎(chǔ)題.19、(1)答案見解析;(2).【解析】如圖,以點為原點,,,的方向分別為,,軸的正方向,建立空間直角坐標系,(1)設(shè),由平面,可得,從而數(shù)量積為零,可求出的值,進而可求得的值;(2)利用空間向量求二面角的余弦值【詳解】解:(1)如圖,以點為原點,,,的方向分別為,,軸的正方向,建立空間直角坐標系,設(shè),則點,,,則,因為平面,所以,所以,解得或當時,,,;當時,,,(2)因為,由(1)知,平面的一個法向量為設(shè)平面的法向量為,因為,,所以令,則所以,由圖知,二面角的平面角為銳角,所以二面角的余弦值為20、(1)(2)面積的最大值為【解析】(1)由離心率為,,得,解得,,,進而可得答案(2)設(shè)直線的方程為,,,,,聯(lián)立直線與橢圓的方程,結(jié)合韋達定理可得,,由弦長公式可得,點到直線的距離,則,,由的面積是面積的5倍,解得,再計算的最大值,即可【小問1詳解】解:因為離心率為,,所以,解得,,,所以【小問2詳解】解:設(shè)直線的方程為,,,,,聯(lián)立,得,所以,,所以,點到直線的距離,所以,,因為的面積是面積的5倍,所以所以或,又因為,是橢圓上異于長軸端點的兩點,所以,所以,令,所以,因為在上單調(diào)遞增,所以,(當時,取等號),所以面積的最大值為.21、(1)證明見解析(2)【解析】(1)建立空間直角坐標系,利用空間向量的坐標運算知,即可證得結(jié)論;(2)利用空間向量結(jié)合已知的面面角余弦值可求得,再利用線面平行的已知條件求得,再將四面體視為以為底面的三棱錐,利用錐體的體積公式即可得解.【小問1詳解】以為坐標原點,,,所在直線分別為,,軸建立空間直角坐標系,則,,,,設(shè),其中,,若是的中點,則,,,于是,∴,即【小問2詳解】由題設(shè)知,,,是平面內(nèi)的兩個不共線向量設(shè)是平面的一個法向量,則,取,得又平面的一個法向量是,∴,而二面角的余弦值為,因此,解得或(舍去),此時設(shè),而,由此得點,,∵平面,且平面的一個法向量是,∴,即,解得,從而將四面體視為以為底面的三棱錐,則其高,故四面體的體積【點睛】方法點睛:求空間角的常用方法:(1)定義法:由異面直線所成角、線面角、二面角的定義,結(jié)合圖形,作出所求空間角,再結(jié)合題中條件,解對應(yīng)的三角形,即可求出結(jié)果;(2)向量法:建立適當?shù)目臻g直角坐標系,通過計算向量的夾角(兩直線的方向向量、直線的方向向量與平面的法向量、兩平面的法向量)的余弦值,即可求得結(jié)果.22、(1)表格見解析,有(2)【解析】(1)根據(jù)統(tǒng)計圖計算填表即可;(2)根據(jù)古典概型計算公式計算即可.【小問1詳解】根據(jù)統(tǒng)計圖可得:每天在線學習數(shù)學的時長不超過1小時數(shù)學成績不超過120分的有人,每天在線學習數(shù)學的時長不超過1小時數(shù)學成績超過120分的有人,每天在線學習數(shù)學的時長超過1小時數(shù)學成績不超過120分的有人,每天在線學習數(shù)學的時長超過1小時數(shù)學成績超過120分的有人,可得列聯(lián)表如下:數(shù)學成績不超過120分數(shù)學成績超過120分總計每天在線學習數(shù)學的時長不超過1小時151025每天在線學習數(shù)學的時長超過1小

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論