




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
安徽省黃山市屯溪一中2025屆數(shù)學(xué)高一上期末經(jīng)典模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.圓的圓心和半徑為()A.(1,1)和11 B.(-1,-1)和11C.(-1,-1)和 D.(1,1)和2.已知函數(shù),若函數(shù)在上有3個零點,則m的取值范圍為()A. B.C. D.3.函數(shù)的最小正周期為,若其圖象向左平移個單位后得到的函數(shù)為奇函數(shù),則函數(shù)的圖象()A.關(guān)于點對稱 B.關(guān)于點對稱C.關(guān)于直線對稱 D.關(guān)于直線對稱4.已知向量,若,則()A.1或4 B.1或C.或4 D.或5.已知函數(shù)部分圖象如圖所示,則A. B.C. D.6.若集合,集合,則()A.{5,8} B.{4,5,6,8}C.{3,5,7,8} D.{3,4,5,6,7,8}7.已知角為第四象限角,則點位于()A.第一象限 B.第二象限C.第三象限 D.第四象限8.下列函數(shù)中,在上單調(diào)遞增的是()A. B.C. D.9.設(shè),,則下面關(guān)系中正確的是()A B.C. D.10.若“”是假命題,則實數(shù)m的最小值為()A.1 B.-C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.計算:=_______________.12.三條直線兩兩相交,它們可以確定的平面有______個.13.冪函數(shù)的圖象過點,則___________.14.計算:__________,__________15.若函數(shù),則______16.函數(shù)的最大值為____________三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù),.(1)當(dāng)時,求函數(shù)的值域;(2)如果對任意的,不等式恒成立,求實數(shù)的取值范圍;(3)是否存在實數(shù),使得函數(shù)最大值為0,若存在,求出的值,若不存在,說明理由.18.(附加題,本小題滿分10分,該題計入總分)已知函數(shù),若在區(qū)間內(nèi)有且僅有一個,使得成立,則稱函數(shù)具有性質(zhì)(1)若,判斷是否具有性質(zhì),說明理由;(2)若函數(shù)具有性質(zhì),試求實數(shù)的取值范圍19.(1)用籬笆圍一個面積為的矩形菜園,當(dāng)這個矩形的邊長為多少時,所用籬笆最短?最短籬笆的長度是多少?(2)用一段長為的籬笆圍成一個矩形菜園,當(dāng)這個矩形的邊長為多少時,菜園的面積最大?最大面積是多少?20.函數(shù)(1)解不等式;(2)若方程有實數(shù)解,求實數(shù)的取值范圍21.已知函數(shù)(1)判斷函數(shù)在區(qū)間上的單調(diào)性,并用定義證明其結(jié)論;(2)求函數(shù)在區(qū)間上的最大值與最小值
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】根據(jù)圓的標(biāo)準(zhǔn)方程寫出圓心和半徑即可.【詳解】因,所以圓心坐標(biāo)為,半徑為,故選:D2、A【解析】畫出函數(shù)圖像,分解因式得到,有一個解故有兩個解,根據(jù)圖像得到答案.【詳解】畫出函數(shù)的圖像,如圖所示:當(dāng)時,即,有一個解;則有兩個解,根據(jù)圖像知:故選:【點睛】本題考查了函數(shù)的零點問題,畫出函數(shù)圖像,分解因式是解題的關(guān)鍵.3、C【解析】求得,求出變換后的函數(shù)解析式,根據(jù)已知條件求出的值,然后利用代入檢驗法可判斷各選項的正誤.【詳解】由題意可得,則,將函數(shù)的圖象向左平移個單位后,得到函數(shù)的圖象,由于函數(shù)為奇函數(shù),則,所以,,,則,故,因為,,故函數(shù)的圖象關(guān)于直線對稱.故選:C.4、B【解析】根據(jù)向量的坐標(biāo)表示,以及向量垂直的條件列出方程,即可求解.【詳解】由題意,向量,可得,因為,則,解得或.故選:B.5、C【解析】由圖可以得到周期,然后利用周期公式求,再將特殊點代入即可求得的表達(dá)式,結(jié)合的范圍即可確定的值.【詳解】由圖可知,,則,所以,則.將點代入得,即,解得,因為,所以.答案為C.【點睛】已知圖像求函數(shù)解析式的問題:(1):一般由圖像求出周期,然后利用公式求解.(2):一般根據(jù)圖像的最大值或者最小值即可求得.(3):一般將已知點代入即可求得.6、D【解析】根據(jù)并集的概念和運(yùn)算即可得出結(jié)果.【詳解】由,得.故選:D7、C【解析】根據(jù)三角函數(shù)的定義判斷、的符號,即可判斷.【詳解】因為是第四象限角,所以,,則點位于第三象限,故選:C8、B【解析】利用基本初等函數(shù)的單調(diào)性可得出合適的選項.【詳解】函數(shù)、、在上均為減函數(shù),函數(shù)在上為增函數(shù).故選:B.9、D【解析】根據(jù)元素與集合關(guān)系,集合與集合的關(guān)系判斷即可得解.【詳解】解:因為,,所以,.故選:D.10、C【解析】根據(jù)題意可得“”是真命題,故只要即可,求出的最大值,即可求出的范圍,從而可得出答案.【詳解】解:因為“”是假命題,所以其否定“”是真命題,故只要即可,因為的最大值為,所以,解得,所以實數(shù)m的最小值為.故選:C.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】考點:兩角和正切公式點評:本題主要考查兩角和的正切公式變形的運(yùn)用,抓住和角是特殊角,是解題的關(guān)鍵.12、1或3【解析】利用平面的基本性質(zhì)及推論即可求出.【詳解】設(shè)三條直線為,不妨設(shè)直線,故直線與確定一個平面,(1)若直線在平面內(nèi),則直線確定一個平面;(2)若直線不在平面內(nèi),則直線確定三個平面;故答案為:1或3;13、【解析】將點的坐標(biāo)代入解析式可解得結(jié)果.【詳解】因為冪函數(shù)的圖象過點,所以,解得.故答案為:14、①.0②.-2【解析】答案:0,15、##0.5【解析】首先計算,從而得到,即可得到答案.【詳解】因為,所以.故答案為:16、【解析】利用二倍角公式將化為,利用三角函數(shù)誘導(dǎo)公式將化為,然后利用二次函數(shù)的性質(zhì)求最值即可【詳解】因為,所以當(dāng)時,取到最大值.【點睛】本題考查了三角函數(shù)化簡與求最值問題,屬于中檔題三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)[0,2];(2)(-∞,);(3)答案見解析.【解析】(1)由h(x)=-2(log3x-1)2+2,根據(jù)log3x∈[0,2],即可得值域;(2)由,令t=log3x,因為x∈[1,9],所以t=log3x∈[0,2],得(3-4t)(3-t)>k對一切t∈[0,2]恒成立,利用二次函數(shù)求函數(shù)的最小值即可;(3)由,假設(shè)最大值為0,因為,則有,求解即可.試題解析:(1)h(x)=(4-2log3x)·log3x=-2(log3x-1)2+2,因為x∈[1,9],所以log3x∈[0,2],故函數(shù)h(x)的值域為[0,2].(2)由,得(3-4log3x)(3-log3x)>k,令t=log3x,因為x∈[1,9],所以t=log3x∈[0,2],所以(3-4t)(3-t)>k對一切t∈[0,2]恒成立,令,其對稱軸為,所以當(dāng)時,的最小值為,綜上,實數(shù)k的取值范圍為(-∞,)..(3)假設(shè)存在實數(shù),使得函數(shù)的最大值為0,由.因為,則有,解得,所以不存在實數(shù),使得函數(shù)的最大值為0.點睛:函數(shù)問題經(jīng)常會遇見恒成立的問題:(1)根據(jù)參變分離,轉(zhuǎn)化為不含參數(shù)的函數(shù)的最值問題;(2)若就可討論參數(shù)不同取值下的函數(shù)的單調(diào)性和極值以及最值,最終轉(zhuǎn)化為,若恒成立;(3)若恒成立,可轉(zhuǎn)化為(需在同一處取得最值).18、(Ⅰ)具有性質(zhì);(Ⅱ)或或【解析】(Ⅰ)具有性質(zhì).若存在,使得,解方程求出方程的根,即可證得;(Ⅱ)依題意,若函數(shù)具有性質(zhì),即方程在上有且只有一個實根.設(shè),即在上有且只有一個零點.討論的取值范圍,結(jié)合零點存在定理,即可得到的范圍試題解析:(Ⅰ)具有性質(zhì)依題意,若存在,使,則時有,即,,.由于,所以.又因為區(qū)間內(nèi)有且僅有一個,使成立,所以具有性質(zhì)5分(Ⅱ)依題意,若函數(shù)具有性質(zhì),即方程在上有且只有一個實根設(shè),即在上有且只有一個零點解法一:(1)當(dāng)時,即時,可得在上為增函數(shù),只需解得交集得(2)當(dāng)時,即時,若使函數(shù)在上有且只有一個零點,需考慮以下3種情況:(?。r,在上有且只有一個零點,符合題意(ⅱ)當(dāng)即時,需解得交集得(ⅲ)當(dāng)時,即時,需解得交集得(3)當(dāng)時,即時,可得在上為減函數(shù)只需解得交集得綜上所述,若函數(shù)具有性質(zhì),實數(shù)的取值范圍是或或14分解法二:依題意,(1)由得,,解得或同時需要考慮以下三種情況:(2)由解得(3)由解得不等式組無解(4)由解得解得綜上所述,若函數(shù)具有性質(zhì),實數(shù)的取值范圍是或或14分考點:1.零點存在定理;2.分類討論的思想19、(1)當(dāng)這個矩形菜園是邊長為的正方形時,最短籬笆的長度為;(2)當(dāng)這個矩形菜園是邊長為的正方形時,最大面積是.【解析】設(shè)矩形菜園的相鄰兩條邊的長分別為、,籬笆的長度為.(1)由題意得出,利用基本不等式可求出矩形周長的最小值,由等號成立的條件可得出矩形的邊長,從而可得出結(jié)論;(2)由題意得出,利用基本不等式可求出矩形面積的最大值,由等號成立的條件可得出矩形的邊長,從而可得出結(jié)論.【詳解】設(shè)矩形菜園的相鄰兩條邊的長分別為、,籬笆的長度為.(1)由已知得,由,可得,所以,當(dāng)且僅當(dāng)時,上式等號成立.因此,當(dāng)這個矩形菜園是邊長為的正方形時,所用籬笆最短,最短籬笆的長度為;(2)由已知得,則,矩形菜園的面積為.由,可得,當(dāng)且僅當(dāng)時,上式等號成立.因此,當(dāng)這個矩形菜園是邊長為的正方形時,菜園的面積最大,最大面積是.【點睛】本題考查基本不等式的應(yīng)用,在運(yùn)用基本不等式求最值時,充分利用“積定和最小,和定積最大”的思想求解,同時也要注意等號成立的條件,考查計算能力,屬于基礎(chǔ)題.20、(1)(2)【解析】(1)由,根據(jù)對數(shù)的單調(diào)性可得,然后解指數(shù)不等式即可.(2)由實數(shù)根,化為有實根,令,有正根即可,對稱軸,開口向上,只需即可求解.【詳解】(1)由,即,所以,,解得所以不等式的解集為.(2)由實數(shù)根,即有實數(shù)根,所以有實根,兩邊平方整理可得令,且,由題意知有大于根即可,即,令,,故故.故實數(shù)的取值范圍.【點睛】本題考查了利用對數(shù)的單調(diào)性解不等式、根據(jù)對數(shù)型方程的根求參數(shù)的取值范圍,屬于中檔題.21、(1)證明見解析;(2)最大值為;小值為【解析】(1)利用單調(diào)性的定義,任取,且,比較和0即可得單調(diào)性
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 電子商務(wù)蓬勃發(fā)展-全面剖析
- 2025-2030全球及中國碳燈LED顯示器行業(yè)市場現(xiàn)狀供需分析及市場深度研究發(fā)展前景及規(guī)劃可行性分析研究報告
- 2025年高爾夫球教練職業(yè)能力測試卷:高爾夫球教學(xué)策略與方法試題集
- 《氣候變化對野生大豆生態(tài)系統(tǒng)服務(wù)功能的影響研究》論文
- 《高丹草的低纖維品種選育及其飼料價值提升》論文
- 塞爾維亞語中的語言與年齡差異研究論文
- 2024年5月衛(wèi)星通信工程師保密期解約特別聲明
- 2025-2030全球及中國枕頭包裝行業(yè)市場現(xiàn)狀供需分析及市場深度研究發(fā)展前景及規(guī)劃可行性分析研究報告
- 2025年高壓電工資格考試:高壓設(shè)備維護(hù)保養(yǎng)計劃案例分析試題集
- 2025-2030全球及中國快速客運(yùn)系統(tǒng)行業(yè)市場現(xiàn)狀供需分析及市場深度研究發(fā)展前景及規(guī)劃可行性分析研究報告
- 浙江省醫(yī)療機(jī)構(gòu)麻醉藥品、精神藥品管理實施細(xì)則
- 《中國近現(xiàn)代史綱要》 課件 第十一章 中國特色社會主義進(jìn)入新時代
- 機(jī)關(guān)單位申請要人的請示范文
- 鈾礦冶安全規(guī)程
- 國標(biāo)熱鍍鋅鋼管規(guī)格尺寸理論重量表
- 設(shè)計方案投標(biāo)技術(shù)標(biāo)文件
- 圓來如此簡單公開課優(yōu)質(zhì)課件獲獎
- (本科)審計(第五版)全套教學(xué)課件完整版PPT
- GB∕T 3639-2021 冷拔或冷軋精密無縫鋼管
- 西師版六年級下冊數(shù)學(xué)第五單元 總復(fù)習(xí) 教案
- 拖欠貨款合同糾紛起訴狀范本
評論
0/150
提交評論