版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年四川省廣安市高三考前演練(五)數(shù)學(xué)試題注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知向量,滿足||=1,||=2,且與的夾角為120°,則=()A. B. C. D.2.?dāng)?shù)學(xué)中的數(shù)形結(jié)合,也可以組成世間萬物的絢麗畫面.一些優(yōu)美的曲線是數(shù)學(xué)形象美、對稱美、和諧美的結(jié)合產(chǎn)物,曲線恰好是四葉玫瑰線.給出下列結(jié)論:①曲線C經(jīng)過5個整點(即橫、縱坐標(biāo)均為整數(shù)的點);②曲線C上任意一點到坐標(biāo)原點O的距離都不超過2;③曲線C圍成區(qū)域的面積大于;④方程表示的曲線C在第二象限和第四象限其中正確結(jié)論的序號是()A.①③ B.②④ C.①②③ D.②③④3.已知直線:()與拋物線:交于(坐標(biāo)原點),兩點,直線:與拋物線交于,兩點.若,則實數(shù)的值為()A. B. C. D.4.已知,為兩條不同直線,,,為三個不同平面,下列命題:①若,,則;②若,,則;③若,,則;④若,,則.其中正確命題序號為()A.②③ B.②③④ C.①④ D.①②③5.已知雙曲線的兩條漸近線與拋物線的準(zhǔn)線分別交于點、,O為坐標(biāo)原點.若雙曲線的離心率為2,三角形AOB的面積為,則p=().A.1 B. C.2 D.36.一個頻率分布表(樣本容量為)不小心被損壞了一部分,只記得樣本中數(shù)據(jù)在上的頻率為,則估計樣本在、內(nèi)的數(shù)據(jù)個數(shù)共有()A. B. C. D.7.設(shè),若函數(shù)在區(qū)間上有三個零點,則實數(shù)的取值范圍是()A. B. C. D.8.若直線與圓相交所得弦長為,則()A.1 B.2 C. D.39.已知集合,,,則()A. B. C. D.10.某幾何體的三視圖如圖所示,三視圖是腰長為1的等腰直角三角形和邊長為1的正方形,則該幾何體中最長的棱長為().A. B. C.1 D.11.已知函數(shù)是奇函數(shù),且,若對,恒成立,則的取值范圍是()A. B. C. D.12.用電腦每次可以從區(qū)間內(nèi)自動生成一個實數(shù),且每次生成每個實數(shù)都是等可能性的.若用該電腦連續(xù)生成3個實數(shù),則這3個實數(shù)都小于的概率為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若復(fù)數(shù)z滿足,其中i是虛數(shù)單位,則z的模是______.14.已知平面向量,,且,則向量與的夾角的大小為________.15.下圖是一個算法的流程圖,則輸出的x的值為_______.16.若四棱錐的側(cè)面內(nèi)有一動點Q,已知Q到底面的距離與Q到點P的距離之比為正常數(shù)k,且動點Q的軌跡是拋物線,則當(dāng)二面角平面角的大小為時,k的值為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在正三棱柱中,,,分別為,的中點.(1)求證:平面;(2)求平面與平面所成二面角銳角的余弦值.18.(12分)已知為坐標(biāo)原點,單位圓與角終邊的交點為,過作平行于軸的直線,設(shè)與終邊所在直線的交點為,.(1)求函數(shù)的最小正周期;(2)求函數(shù)在區(qū)間上的值域.19.(12分)已知函數(shù),函數(shù),其中,是的一個極值點,且.(1)討論的單調(diào)性(2)求實數(shù)和a的值(3)證明20.(12分)為提供市民的健身素質(zhì),某市把四個籃球館全部轉(zhuǎn)為免費民用(1)在一次全民健身活動中,四個籃球館的使用場數(shù)如圖,用分層抽樣的方法從四場館的使用場數(shù)中依次抽取共25場,在中隨機取兩數(shù),求這兩數(shù)和的分布列和數(shù)學(xué)期望;(2)設(shè)四個籃球館一個月內(nèi)各館使用次數(shù)之和為,其相應(yīng)維修費用為元,根據(jù)統(tǒng)計,得到如下表的數(shù)據(jù):x10152025303540y100001176113010139801477115440160202.993.494.054.504.995.495.99①用最小二乘法求與的回歸直線方程;②叫做籃球館月惠值,根據(jù)①的結(jié)論,試估計這四個籃球館月惠值最大時的值參考數(shù)據(jù)和公式:,21.(12分)如圖,四棱錐,側(cè)面是邊長為2的正三角形,且與底面垂直,底面是的菱形,為棱上的動點,且.(I)求證:為直角三角形;(II)試確定的值,使得二面角的平面角余弦值為.22.(10分)在平面直角坐標(biāo)系xoy中,以坐標(biāo)原點O為極點,x軸正半軸為極軸建立極坐標(biāo)系。已知曲線C的極坐標(biāo)方程為,過點的直線l的參數(shù)方程為(為參數(shù)),直線l與曲線C交于M、N兩點。(1)寫出直線l的普通方程和曲線C的直角坐標(biāo)方程:(2)若成等比數(shù)列,求a的值。
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】
先計算,然后將進(jìn)行平方,,可得結(jié)果.【詳解】由題意可得:∴∴則.故選:D.【點睛】本題考查的是向量的數(shù)量積的運算和模的計算,屬基礎(chǔ)題。2.B【解析】
利用基本不等式得,可判斷②;和聯(lián)立解得可判斷①③;由圖可判斷④.【詳解】,解得(當(dāng)且僅當(dāng)時取等號),則②正確;將和聯(lián)立,解得,即圓與曲線C相切于點,,,,則①和③都錯誤;由,得④正確.故選:B.【點睛】本題考查曲線與方程的應(yīng)用,根據(jù)方程,判斷曲線的性質(zhì)及結(jié)論,考查學(xué)生邏輯推理能力,是一道有一定難度的題.3.D【解析】
設(shè),,聯(lián)立直線與拋物線方程,消去、列出韋達(dá)定理,再由直線與拋物線的交點求出點坐標(biāo),最后根據(jù),得到方程,即可求出參數(shù)的值;【詳解】解:設(shè),,由,得,∵,解得或,∴,.又由,得,∴或,∴,∵,∴,又∵,∴代入解得.故選:D【點睛】本題考查直線與拋物線的綜合應(yīng)用,弦長公式的應(yīng)用,屬于中檔題.4.C【解析】
根據(jù)直線與平面,平面與平面的位置關(guān)系進(jìn)行判斷即可.【詳解】根據(jù)面面平行的性質(zhì)以及判定定理可得,若,,則,故①正確;若,,平面可能相交,故②錯誤;若,,則可能平行,故③錯誤;由線面垂直的性質(zhì)可得,④正確;故選:C【點睛】本題主要考查了判斷直線與平面,平面與平面的位置關(guān)系,屬于中檔題.5.C【解析】試題分析:拋物線的準(zhǔn)線為,雙曲線的離心率為2,則,,漸近線方程為,求出交點,,,則;選C考點:1.雙曲線的漸近線和離心率;2.拋物線的準(zhǔn)線方程;6.B【解析】
計算出樣本在的數(shù)據(jù)個數(shù),再減去樣本在的數(shù)據(jù)個數(shù)即可得出結(jié)果.【詳解】由題意可知,樣本在的數(shù)據(jù)個數(shù)為,樣本在的數(shù)據(jù)個數(shù)為,因此,樣本在、內(nèi)的數(shù)據(jù)個數(shù)為.故選:B.【點睛】本題考查利用頻數(shù)分布表計算頻數(shù),要理解頻數(shù)、樣本容量與頻率三者之間的關(guān)系,考查計算能力,屬于基礎(chǔ)題.7.D【解析】令,可得.在坐標(biāo)系內(nèi)畫出函數(shù)的圖象(如圖所示).當(dāng)時,.由得.設(shè)過原點的直線與函數(shù)的圖象切于點,則有,解得.所以當(dāng)直線與函數(shù)的圖象切時.又當(dāng)直線經(jīng)過點時,有,解得.結(jié)合圖象可得當(dāng)直線與函數(shù)的圖象有3個交點時,實數(shù)的取值范圍是.即函數(shù)在區(qū)間上有三個零點時,實數(shù)的取值范圍是.選D.點睛:已知函數(shù)零點的個數(shù)(方程根的個數(shù))求參數(shù)值(取值范圍)的方法(1)直接法:直接求解方程得到方程的根,再通過解不等式確定參數(shù)范圍;(2)分離參數(shù)法:先將參數(shù)分離,轉(zhuǎn)化成求函數(shù)的值域問題加以解決;(3)數(shù)形結(jié)合法:先對解析式變形,在同一平面直角坐標(biāo)系中,畫出函數(shù)的圖象,然后數(shù)形結(jié)合求解,對于一些比較復(fù)雜的函數(shù)的零點問題常用此方法求解.8.A【解析】
將圓的方程化簡成標(biāo)準(zhǔn)方程,再根據(jù)垂徑定理求解即可.【詳解】圓的標(biāo)準(zhǔn)方程,圓心坐標(biāo)為,半徑為,因為直線與圓相交所得弦長為,所以直線過圓心,得,即.故選:A【點睛】本題考查了根據(jù)垂徑定理求解直線中參數(shù)的方法,屬于基礎(chǔ)題.9.A【解析】
求得集合中函數(shù)的值域,由此求得,進(jìn)而求得.【詳解】由,得,所以,所以.故選:A【點睛】本小題主要考查函數(shù)值域的求法,考查集合補集、交集的概念和運算,屬于基礎(chǔ)題.10.B【解析】
首先由三視圖還原幾何體,進(jìn)一步求出幾何體的棱長.【詳解】解:根據(jù)三視圖還原幾何體如圖所示,所以,該四棱錐體的最長的棱長為.故選:B.【點睛】本題主要考查由三視圖還原幾何體,考查運算能力和推理能力,屬于基礎(chǔ)題.11.A【解析】
先根據(jù)函數(shù)奇偶性求得,利用導(dǎo)數(shù)判斷函數(shù)單調(diào)性,利用函數(shù)單調(diào)性求解不等式即可.【詳解】因為函數(shù)是奇函數(shù),所以函數(shù)是偶函數(shù).,即,又,所以,.函數(shù)的定義域為,所以,則函數(shù)在上為單調(diào)遞增函數(shù).又在上,,所以為偶函數(shù),且在上單調(diào)遞增.由,可得,對恒成立,則,對恒成立,,得,所以的取值范圍是.故選:A.【點睛】本題考查利用函數(shù)單調(diào)性求解不等式,根據(jù)方程組法求函數(shù)解析式,利用導(dǎo)數(shù)判斷函數(shù)單調(diào)性,屬壓軸題.12.C【解析】
由幾何概型的概率計算,知每次生成一個實數(shù)小于1的概率為,結(jié)合獨立事件發(fā)生的概率計算即可.【詳解】∵每次生成一個實數(shù)小于1的概率為.∴這3個實數(shù)都小于1的概率為.故選:C.【點睛】本題考查獨立事件同時發(fā)生的概率,考查學(xué)生基本的計算能力,是一道容易題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
先求得復(fù)數(shù),再由復(fù)數(shù)模的計算公式即得.【詳解】,,則.故答案為:【點睛】本題考查復(fù)數(shù)的四則運算和求復(fù)數(shù)的模,是基礎(chǔ)題.14.【解析】
由,解得,進(jìn)而求出,即可得出結(jié)果.【詳解】解:因為,所以,解得,所以,所以向量與的夾角的大小為.都答案為:.【點睛】本題主要考查平面向量的運算,平面向量垂直,向量夾角等基礎(chǔ)知識;考查運算求解能力,屬于基礎(chǔ)題.15.1【解析】
利用流程圖,逐次進(jìn)行運算,直到退出循環(huán),得到輸出值.【詳解】第一次:x=4,y=11,第二次:x=5,y=32,第三次:x=1,y=14,此時14>10×1+3,輸出x,故輸出x的值為1.故答案為:.【點睛】本題主要考查程序框圖的識別,“還原現(xiàn)場”是求解這類問題的良方,側(cè)重考查邏輯推理的核心素養(yǎng).16.【解析】
二面角平面角為,點Q到底面的距離為,點Q到定直線得距離為d,則.再由點Q到底面的距離與到點P的距離之比為正常數(shù)k,可得,由此可得,則由可求k值.【詳解】解:如圖,設(shè)二面角平面角為,點Q到底面的距離為,點Q到定直線的距離為d,則,即.∵點Q到底面的距離與到點P的距離之比為正常數(shù)k,∴,則,∵動點Q的軌跡是拋物線,∴,即則.∴二面角的平面角的余弦值為解得:().故答案為:.【點睛】本題考查了四棱錐的結(jié)構(gòu)特征,由四棱錐的側(cè)面與底面的夾角求參數(shù)值,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)證明見詳解;(2).【解析】
(1)取中點為,通過證明//,進(jìn)而證明線面平行;(2)取中點為,以為坐標(biāo)原點建立直角坐標(biāo)系,求得兩個平面的法向量,用向量法解得二面角的大小.【詳解】(1)證明:取的中點,連結(jié),,如下圖所示:在中,因為為的中點,,且,又為的中點,,,且,,且,四邊形為平行四邊形,又平面,平面,平面,即證.(2)取中點,連結(jié),,則,平面,以為原點,分別以,,為,,軸,建立空間直角坐標(biāo)系,如下圖所示:則,,,,,,,,設(shè)平面的一個法向量,則,則,令.則,同理得平面的一個法向量為,則,故平面與平面所成二面角(銳角)的余弦值為.【點睛】本題考查由線線平行推證線面平行,以及利用向量法求解二面角的大小,屬綜合中檔題.18.(1);(2).【解析】
(1)根據(jù)題意,求得,,因而得出,利用降冪公式和二倍角的正弦公式化簡函數(shù),最后利用,求出的最小正周期;(2)由(1)得,再利用整體代入求出函數(shù)的值域.【詳解】(1)因為,,所以,,所以函數(shù)的最小正周期為.(2)因為,所以,所以,故函數(shù)在區(qū)間上的值域為.【點睛】本題考查正弦型函數(shù)的周期和值域,運用到向量的坐標(biāo)運算、降冪公式和二倍角的正弦公式,考查化簡和計算能力.19.(1)在區(qū)間單調(diào)遞增;(2);(3)證明見解析.【解析】
(1)求出,在定義域內(nèi),再次求導(dǎo),可得在區(qū)間上恒成立,從而可得結(jié)論;(2)由,可得,由可得,聯(lián)立解方程組可得結(jié)果;(3)由(1)知在區(qū)間單調(diào)遞增,可證明,取,可得,而,利用裂項相消法,結(jié)合放縮法可得結(jié)果.【詳解】(1)由已知可得函數(shù)的定義域為,且,令,則有,由,可得,可知當(dāng)x變化時,的變化情況如下表:1-0+極小值,即,可得在區(qū)間單調(diào)遞增;(2)由已知可得函數(shù)的定義域為,且,由已知得,即,①由可得,,②聯(lián)立①②,消去a,可得,③令,則,由(1)知,,故,在區(qū)間單調(diào)遞增,注意到,所以方程③有唯一解,代入①,可得,;(3)證明:由(1)知在區(qū)間單調(diào)遞增,故當(dāng)時,,,可得在區(qū)間單調(diào)遞增,因此,當(dāng)時,,即,亦即,這時,故可得,取,可得,而,故.【點睛】本題主要考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性以及不等式的證明,屬于難題.不等式證明問題是近年高考命題的熱點,利用導(dǎo)數(shù)證明不等主要方法有兩個,一是比較簡單的不等式證明,不等式兩邊作差構(gòu)造函數(shù),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,求出函數(shù)的最值即可;二是較為綜合的不等式證明,要觀察不等式特點,結(jié)合已解答的問題把要證的不等式變形,并運用已證結(jié)論先行放縮,然后再化簡或者進(jìn)一步利用導(dǎo)數(shù)證明.20.(1)見解析,12.5(2)①②20【解析】
(1)運用分層抽樣,結(jié)合總場次為100,可求得的值,再運用古典概型的概率計算公式可求解果;(2)①由公式可計算的值,進(jìn)而可求與的回歸直線方程;②求出,再對函數(shù)求導(dǎo),結(jié)合單調(diào)性,可估計這四個籃球館月惠值最大時的值.【詳解】解:(1)抽樣比為,所以分別是,6,7,8,5所以兩數(shù)之和所有可能取值是:10,12,13,15,,,所以分布列為期望為(2)因為所以,,;②,設(shè),所以當(dāng)遞增,當(dāng)遞減所以約惠值最大值時的值為20【點睛】本題考查直方圖的實際應(yīng)用,涉及求概率,平均數(shù)、擬合直線和導(dǎo)數(shù)等問題,關(guān)鍵是要讀懂題意,屬于中檔題.21.(1)見
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 血壓測量儀器細(xì)分市場深度研究報告
- 不碎玻璃產(chǎn)業(yè)鏈招商引資的調(diào)研報告
- 可移動盥洗室產(chǎn)業(yè)鏈招商引資的調(diào)研報告
- 2024年湖北省人才發(fā)展集團有限公司社會招聘8人筆試模擬試題及答案解析
- 2024年安徽國勝大藥房有限公司招聘若干人筆試模擬試題及答案解析
- 確保孩子身心健康的措施計劃
- 家校共育藝術(shù)教育方案計劃
- 急診科室藥品管理規(guī)范計劃
- 行業(yè)保安隊伍建設(shè)的發(fā)展方向計劃
- 數(shù)控機床考試試題附答案
- 24秋國家開放大學(xué)《公共關(guān)系學(xué)》實訓(xùn)任務(wù)一答案
- BIOS基礎(chǔ)知識題庫單選題100道及答案解析
- 2024年銀行考試-建設(shè)銀行紀(jì)檢監(jiān)察條線考試近5年真題附答案
- 中國老年骨質(zhì)疏松癥診療指南(2023)解讀課件
- GB/T 44448-2024低速風(fēng)洞性能測試規(guī)范
- 婚慶公司轉(zhuǎn)讓合同模板
- 11.9消防宣傳日關(guān)注消防安全主題班會課件
- 期中達(dá)標(biāo)檢測卷(試題)-2024-2025學(xué)年北師大版二年級數(shù)學(xué)上冊
- 廣東開放大學(xué)2024年秋《國家安全概論(S)(本專)》形成性考核作業(yè)參考答案
- 部編人教版《道德與法治》六年級上冊第6課《人大代表為人民》課件
- 盤扣式卸料平臺施工方案
評論
0/150
提交評論