分類加法計(jì)數(shù)原理和分步乘法計(jì)數(shù)原理_第1頁(yè)
分類加法計(jì)數(shù)原理和分步乘法計(jì)數(shù)原理_第2頁(yè)
分類加法計(jì)數(shù)原理和分步乘法計(jì)數(shù)原理_第3頁(yè)
分類加法計(jì)數(shù)原理和分步乘法計(jì)數(shù)原理_第4頁(yè)
分類加法計(jì)數(shù)原理和分步乘法計(jì)數(shù)原理_第5頁(yè)
已閱讀5頁(yè),還剩29頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1.1分類加法計(jì)數(shù)原理與分步乘法計(jì)數(shù)原理用A~Z或0~9給教室的座位編號(hào)有多少不同的號(hào)碼?分析:給座位編號(hào)有2類方法,第一類方法,用英文字母,有26種號(hào)碼;第二類方法,用阿拉伯?dāng)?shù)字,有10種號(hào)碼;所以有26+10=36種不同號(hào)碼.從甲地到乙地,可以乘火車,也可以乘汽車。一天中,火車有4班,汽車有2班。那么一天中乘坐這些交通工具從甲地到乙地共有多少種不同的走法?分析:從甲地到乙地有2類方法,第一類方法,乘火車,有4種方法;第二類方法,乘汽車,有2種方法;所以從甲地到乙地共有4+2=6種方法.你能說(shuō)出這兩個(gè)問(wèn)分類加法計(jì)數(shù)原理完成一件事有兩類不同方案,在第1類方案中有m種不同的方法,在第2類方案中有n種不同的方法.那么完成這件事共有N=m+n種不同的方法兩類中的方法不相同例在填寫(xiě)高考志愿表時(shí),一名高中畢業(yè)生了解到,A,B兩所大學(xué)各有一些自己感興趣的強(qiáng)項(xiàng)專業(yè),具體如下:A大學(xué)生物學(xué)

化學(xué)

醫(yī)學(xué)

物理學(xué)

工程學(xué)B大學(xué)數(shù)學(xué)

會(huì)計(jì)學(xué)

信息技術(shù)學(xué)

法學(xué)這名同學(xué)可能的專業(yè)選擇共有多少種?分析:兩大學(xué)只能選一所一專業(yè),且沒(méi)有共同的強(qiáng)項(xiàng)專業(yè)54+=9這名同學(xué)可能的專業(yè)選擇共有9種從甲地到乙地,可以乘火車,也可以乘汽車,還可以乘輪船。一天中,火車有4班,汽車有2班,輪船有3班。那么一天中乘坐這些交通工具從甲地到乙地共有多少種不同的走法?分析:從甲地到乙地有3類方法,第一類方法,乘火車,有4種方法;第二類方法,乘汽車,有2種方法;第三類方法,乘輪船,有3種方法;所以從甲地到乙地共有4+2+3=9種方法.完成一件事有三類不同方案,在第1類方案中有m1種不同的方法,在第2類方案中有m2種不同的方法,在第3類方案中有m3種不同的方法。那么完成這件事共有m1+m2+m3種方法.做一件事情,完成它可以有n類辦法,在第一類辦法中有m1種不同的方法,在第二類辦法中有m2種不同的方法,……,在第n類辦法中有mn種不同的方法。那么完成這件事共有__________種不同的方法N=m1+m2+…+mn

用前6個(gè)大寫(xiě)英文字母和1~9個(gè)阿拉伯?dāng)?shù)字,以A1,A2,,B1,B2

的方式給教室的座位編號(hào).有多少不同的號(hào)碼?A123456789A1A2A3A4A5A6A7A8A99種B1234567899種6×9=54如圖,由A村去B村的道路有3條,由B村去C村的道路有2條。從A村經(jīng)B村去C村,共有多少種不同的走法?A村B村C村北南中北南分析:從A村經(jīng)B村去C村有2步,第一步,由A村去B村有3種方法,第二步,由B村去C村有2種方法,所以從A村經(jīng)B村去C村共有3×2=6種不同的方法你能說(shuō)出這兩個(gè)問(wèn)分步乘法計(jì)數(shù)原理完成一件事需要兩個(gè)步驟,做第1步有m種不同的方法,做第2步有n種不同的方法,那么完成這件事共有N=m×n種不同的方法.例設(shè)某班有男生30名,女生24名.現(xiàn)要從中選出男、女各一名代表班級(jí)參加比賽,共有多少種不同的選法?分兩步進(jìn)行選取男女3024×=720再根據(jù)分步乘法原理若再要從語(yǔ),數(shù),英三科科任老師中選出一名代表參加比賽,那又共有多少種選法?老師3×=2160如果完成一件事需要三個(gè)步驟,做第1步有m1種不同的方法,做第2步有m2種不同的方法,做第3步有m3種不同的方法,那么完成這件事共有_________________種不同的方法.N=m1×m2×m3做一件事情,完成它需要分成n個(gè)步驟,做第一步有m1種不同的方法,做第二步有m2種不同的方法,……,做第n步有mn種不同的方法,那么完成這件事有_____________________種不同的方法.N=m1×m2×…×mn

農(nóng)民生活狀況是怎么個(gè)樣子的呢?下面是小編整理提供的農(nóng)民生活狀況調(diào)查報(bào)告范例,歡迎閱讀參考!希望大家采納!更多相關(guān)信息請(qǐng)關(guān)注美文網(wǎng)的欄目!篇一農(nóng)民,這個(gè)特殊的稱謂,從它的誕生之日起就注定與土地結(jié)下了深厚的情誼。1949年偉大的中華人民共和國(guó)的成立,使農(nóng)民一改千百年來(lái)受剝削、受壓迫的地位,徹底地作了主人。歷史的年輪駛?cè)敫母镩_(kāi)放的今天,農(nóng)民的政治地位和生活狀況已經(jīng)得到了極大的改善和提高。能夠代表一個(gè)國(guó)家真正實(shí)力的不是所謂的GDP,而應(yīng)該是廣大農(nóng)民的生活水平,他們生活在社會(huì)的最低層,是最具有發(fā)言權(quán)的。另一方面黨和國(guó)家對(duì)農(nóng)村的重視程度與日俱增,頒布的大量政策都本著利民惠民的目的。尤其是近年來(lái)農(nóng)業(yè)稅的免除到按畝的補(bǔ)貼,都讓我們廣大農(nóng)民的家庭負(fù)擔(dān)大大減輕,當(dāng)然這只是國(guó)家對(duì)刺激農(nóng)村生活水平提高的政策的典型代表,還有許多其他的政策比如:九年義務(wù)教育學(xué)雜費(fèi)免除、農(nóng)村醫(yī)療保險(xiǎn)等等,這些都為農(nóng)民是實(shí)現(xiàn)增收解決了許多的問(wèn)題。利用暑假時(shí)間,我和同學(xué)對(duì)家鄉(xiāng)大連市金州區(qū)登沙河鎮(zhèn)高家村和海頭村的農(nóng)民進(jìn)行了部分的調(diào)查,了解農(nóng)戶收入、支出的實(shí)況,希望可以讓社會(huì)這個(gè)大的生活群體受到更多的關(guān)注,對(duì)于農(nóng)民的收入例書(shū)架第1層放有4本不同的計(jì)算機(jī)書(shū),第2層放有3本不同的文藝書(shū),第3層放有2本不同的體育書(shū).(1)從書(shū)架中取1本書(shū),有多少種不同取法?有3類方法,根據(jù)分類加法計(jì)數(shù)原理N=4+3+2=9(2)從書(shū)架第1,2,3層各取1本書(shū),有多少種不同取法?分3步完成,根據(jù)分步乘法計(jì)數(shù)原理N=4×3×2=24解題關(guān)鍵:從總體上看做這件事情是“分類完成”,還是“分步完成”.再根據(jù)其對(duì)應(yīng)的計(jì)數(shù)原理計(jì)算.練習(xí)要從甲、乙、丙3幅不同的畫(huà)中選出2幅,分別掛在左、右兩邊墻上的指定位置,問(wèn)共有多少種不同的掛法?分兩步完成左邊右邊甲乙丙乙丙甲丙甲乙32第一步第二步×1、從5名同學(xué)中選出正副班長(zhǎng)各一名,則不同的任職方案有多少種?2、三層書(shū)架上,上層放著10本不同的語(yǔ)文書(shū),中層放著9本不同的數(shù)學(xué)書(shū),下層放著8本不同的英語(yǔ)書(shū),(1)從書(shū)架上任取一本,有多少種取法?(2)從書(shū)架上任取語(yǔ)數(shù)外各一本,有多少種取法?3、在所有的兩位數(shù)中,個(gè)位數(shù)字大于十位數(shù)字的兩位數(shù)共有多少個(gè)?4.某中學(xué)的一幢5層教學(xué)樓共有3處樓梯,問(wèn)從1樓到5樓共有多少種不同的走法?判斷下列用分類還是分步原理,并說(shuō)出式子分步5×4分類10+9+8分步10×9×8分類(按十位分)8+7+6+5+4+3+2+1分步3×3×3×33、如圖:甲乙,在兒童公園中有四個(gè)圓圈組成的連環(huán)道路,從甲走到乙,不同的路線的走法有()(A)2種(B)8種(C)12種(D)16種問(wèn)題32、3個(gè)人分到四個(gè)班級(jí),有多少種不同的分法?明確完成什么事情?1、把四封不同的信任意投入三個(gè)信箱中,不同投法種數(shù)是()A.12B.43C.34

D.7CD43在所有的兩位數(shù)中,個(gè)位數(shù)字大于十位數(shù)字的兩位數(shù)共有多少個(gè)?分析1:按個(gè)位數(shù)字是2,3,4,5,6,7,8,9分成8類,在每一類中滿足條件的兩位數(shù)分別是:1個(gè),2個(gè),3個(gè),4個(gè),5個(gè),6個(gè),7個(gè),8個(gè).根據(jù)加法原理共有1+2+3+4+5+6+7+8=36(個(gè)).分析2:按十位數(shù)字是1,2,3,4,5,6,7,8分成8類,在每一類中滿足條件的兩位數(shù)分別是:8個(gè),7個(gè),6個(gè),5個(gè),4個(gè),3個(gè),2個(gè),1個(gè).根據(jù)加法原理共有8+7+6+5+4+3+2+1=36(個(gè))練習(xí)一個(gè)三位密碼鎖,各位上數(shù)字由0,1,2,3,4,5,

6,7,8,9十個(gè)數(shù)字組成,可以設(shè)置多少種三位數(shù)的密碼(各位上的數(shù)字允許重復(fù))?首位數(shù)字不為0的密碼數(shù)是多少?首位數(shù)字是0的密碼數(shù)又是多少?

分析:

按密碼位數(shù),從左到右

依次設(shè)置第一位、第二位、第三

位,需分為三步完成;第一步,m1=10;第二步,m2=10;第三步,m3=10.根據(jù)乘法原理,共可以設(shè)置

N=10×10×10=103種三位數(shù)的密碼。練習(xí)答:首位數(shù)字不為0的密碼數(shù)是

N=9×10×10=9×102種,

首位數(shù)字是0的密碼數(shù)是

N=1×10×10=102種。

由此可以看出,

首位數(shù)字不為0的密碼數(shù)與首位數(shù)字是0的密碼數(shù)之和等于密碼總數(shù)。問(wèn):若設(shè)置四位、五位、六位、…、十位等密碼,密碼數(shù)分別有多少種?答:它們的密碼種數(shù)依次是104,105,106,……種。如圖,要給地圖A、B、C、D四個(gè)區(qū)域分別涂上3種不同顏色中的某一種,允許同一種顏色使用多次,但相鄰區(qū)域必須涂不同的顏色,不同的涂色方案有多少種?練習(xí)解:按地圖A、B、C、D四個(gè)區(qū)域依次分四步完成,第一步,m1=3種,第二步,m2=2種,第三步,m3=1種,第四步,m4=1種,所以根據(jù)乘法原理,得到不同的涂色方案種數(shù)共有N=3×2×1×1=6種。如圖,要給地圖A、B、C、D四個(gè)區(qū)域分別涂上3種不同顏色中的某一種,允許同一種顏色使用多次,但相鄰區(qū)域必須涂不同的顏色,不同的涂色方案有多少種?練習(xí)問(wèn):若用2色、4色、5色等,結(jié)果又怎樣呢?答:它們的涂色方案種數(shù)分別是0,4×3×2×2=48,5×4×3×3=180種。如圖,要給地圖A、B、C、D四個(gè)區(qū)域分別涂上3種不同顏色中的某一種,允許同一種顏色使用多次,但相鄰區(qū)域必須涂不同的顏色,不同的涂色方案有多少種?練習(xí)如圖,該電路從A到B共有多少條不同的線路可通電?AB分類完成分步完成……ABm1m2mn…...ABm1m2mn點(diǎn)評(píng):乘法原理看成“串聯(lián)電路”加法原理看成“并聯(lián)電路”;解:從總體上看由A到B的通電線路可分二類,第一類,m1=4條第二類,m3=2×2=4,條所以,根據(jù)加法原理,從A到B共有N=4+4=8條不同的線路可通電.如圖,一螞蟻沿著長(zhǎng)方體的棱,從一個(gè)頂點(diǎn)爬到相對(duì)的另一個(gè)頂點(diǎn)的最近路線共有多少條?A1B1C1D1ACDB練習(xí)

解:如圖,從總體上看,如,螞蟻從頂點(diǎn)A爬到頂點(diǎn)C1有三類方法,從局部上看每類又需兩步完成,所以,第一類,m1=1×2=2條第二類,m2=1×2=2條第三類,m3=1×2=2條所以,根據(jù)加法原理,從頂點(diǎn)A到頂點(diǎn)C1最近路線共有N=2+2+2=6條。A1B1C1D1ACDB如圖,從甲地到乙地有2條路可通,從乙地到丙地有3條路可通;從甲地到丁地有4條路可通,從丁地到丙地有2條路可通。從甲地到丙地共有多少種不同的走法?練習(xí)解:從總體上看,由甲到丙有兩類不同的走法,第一類,由甲經(jīng)乙去丙,又需分兩步,所以

m1=2×3=6種不同的走法;第二類,由甲經(jīng)丁去丙,也需分兩步,所以

m2=4×2=8種不同的走法;所以從甲地到丙地共有N=6+8=14種不同的走法。加法原理和乘法原理的共同點(diǎn)是什么?不同點(diǎn)什么?加法原理乘法原

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論