版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
滬科版八年級上第9招全等三角形判定的三種類型01教你一招02典例剖析03分類訓練目
錄CONTENTS1.
一般三角形全等的判定方法有四種:
SSS
,
SAS
,
ASA
,
AAS
;直角三角形是一種特殊的三角形,它的判
定方法除了上述四種之外,還有一種特殊的方法,即
HL
.
具體到某一道題目時,要根據題目所給出的條件進
行觀察、分析,選擇合適、簡單易行的方法來解題.2.
證明三角形全等的思路:先分析條件,明確待證全等的兩
個三角形已經具備的條件,然后以其為基礎,結合已知的
其他條件,分析推導得出需要的條件.
如圖,在四邊形
ABCD
中,
AB
=
AD
,
CB
=
CD
.
求證:∠
B
=∠
D
.
判定三角形全等時,需要三對相等的對應邊或角
(至少有一對對應邊),因此我們可以先根據題目的條件確定
出全等三角形.本題圖中沒有三角形,可以連接
AC
,將∠
B
和∠
D
分別放在兩個三角形中,通過三邊對應相等證明兩個
三角形全等來證明∠
B
和∠
D
相等.
已知一邊一角型1234567方法1一次全等型1.
如圖,在Rt△
ABC
中,∠
B
=90°,
CD
∥
AB
,
DE
⊥
AC
于點
E
,且
CE
=
AB
.
求證:△
CED
≌△
ABC
.
1234567方法2兩次全等型2.
如圖,在△
ABC
中,
D
,
E
分別是
AB
,
AC
邊上的點,
BD
=
CE
,∠
ABE
=∠
ACD
,
BE
與
CD
相交于點
F
.
求證:△
ABC
是等腰三角形.1234567
12345673.
如圖,在四邊形
ABCD
中,
E
是
AB
的中點,
AD
∥
EC
,
∠
AED
=∠
B
.
(1)求證:△
AED
≌△
EBC
;
1234567(2)當
AB
=6時,求
CD
的長.
1234567
已知兩邊型方法1一次全等型4.
如圖,已知點
A
,
D
,
C
,
B
在同一條直線上,
AD
=
BC
,
AE
=
BF
,
CE
=
DF
.
求證:(1)△
AEC
≌△
BFD
;1234567
1234567(2)
AE
∥
BF
.
【證明】∵△
AEC
≌△
BFD
,∴∠
A
=∠
B
.
∴
AE
∥
BF
.
1234567方法2兩次全等型5.
如圖,在△
ABC
中,
AB
=
AC
,
D
是
BC
的中點,點
E
在
AD
上.(1)求證:∠
ABE
=∠
ACE
;1234567
1234567(2)延長
BE
交
AC
于點
F
,延長
CE
交
AB
于點
G
.
求證:
EG
=
EF
.
1234567
已知兩角型方法1一次全等型6.
[2024·蚌埠蚌山區(qū)G5教研聯盟月考]如圖,在△
ABC
中,
∠
C
=90°,
AD
是∠
CAB
的平分線,
DE
⊥
AB
于點
E
,點
F
在邊
AC
上,連接
DF
.
(1)求證:
AC
=
AE
;1234567
1234567(2)若
DF
=
DB
,
AB
=
m
,
AF
=
n
,則
BE
的長
為
(用含
m
,
n
的代數式表示).
1234567∴Rt△
CDF
≌Rt△
EDB
(
HL
),∴
CF
=
BE
.
由(1)知
AC
=
AE
,∴
AB
=
AE
+
BE
=
AC
+
BE
.
又∵
AC
=
AF
+
CF
,∴
AB
=
AF
+2
BE
.
【點撥】由(1)知△
ACD
≌△
AED
.
∴
DC
=
DE
.
易知∠
BED
=90°.
1234567方法2兩次全等型7.
如圖,在△
ABC
與△
DCB
中,
AC
與
BD
交于點
E
,且
∠
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 外墻涂料工程招標說明
- 財務審計勞務合同
- 個人短期借款合同示例
- 中原地產房屋買賣合同風險提示
- 顯示屏采購合約格式
- 酒店制服購銷合約
- 廣華客運站招標要求及流程詳解
- 招標文件制作招標
- 網絡服務合同協(xié)議范本
- 中小企業(yè)借款合同英文
- 公園建設投標方案(技術標)
- 2024年海南??谑惺≈锌紨祵W試題
- 國開(FJ)形考復習資料電大2024《資產評估》形成性考核二
- 【甲子光年】2024自動駕駛行業(yè)報告-“端到端”漸行漸近
- 2024至2030年中國防彈衣行業(yè)市場全景分析及投資策略研究報告
- 2024秋國家開放大學“開放本科”行管專業(yè)《管理英語3》期末考試真題3試
- 2023-2024學年全國小學二年級上語文人教版期末試卷(含答案解析)
- 簡約英文教學課件模板
- 陳述句改成雙重否定句
- 省級“雙減”大單元作業(yè)設計五年級道德與法治下冊第一單元作業(yè)
- 2024河北科技工程職業(yè)技術大學教師招聘考試筆試試題
評論
0/150
提交評論