新課標(biāo)人教版高中數(shù)學(xué)必修二教案合集_第1頁
新課標(biāo)人教版高中數(shù)學(xué)必修二教案合集_第2頁
新課標(biāo)人教版高中數(shù)學(xué)必修二教案合集_第3頁
新課標(biāo)人教版高中數(shù)學(xué)必修二教案合集_第4頁
新課標(biāo)人教版高中數(shù)學(xué)必修二教案合集_第5頁
已閱讀5頁,還剩78頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

新課標(biāo)人教版高中數(shù)學(xué)必修二教案合集第一章:空間幾何體1.1.1柱、錐、臺(tái)、球的結(jié)構(gòu)特征一、教學(xué)目標(biāo)1.知識(shí)與技能(1)通過實(shí)物操作,增強(qiáng)學(xué)生的直觀感知。(2)能根據(jù)幾何結(jié)構(gòu)特征對(duì)空間物體進(jìn)行分類。(3)會(huì)用語言概述棱柱、棱錐、圓柱、圓錐、棱臺(tái)、圓臺(tái)、球的結(jié)構(gòu)特征。(4)會(huì)表示有關(guān)于幾何體以及柱、錐、臺(tái)的分類。2.過程與方法(1)讓學(xué)生通過直觀感受空間物體,從實(shí)物中概括出柱、錐、臺(tái)、球的幾何結(jié)構(gòu)特征。(2)讓學(xué)生觀察、討論、歸納、概括所學(xué)的知識(shí)。3.情感態(tài)度與價(jià)值觀(1)使學(xué)生感受空間幾何體存在于現(xiàn)實(shí)生活周圍,增強(qiáng)學(xué)生學(xué)習(xí)的積極性,同時(shí)提高學(xué)生的觀察能力。(2)培養(yǎng)學(xué)生的空間想象能力和抽象括能力。二、教學(xué)重點(diǎn)、難點(diǎn)重點(diǎn):讓學(xué)生感受大量空間實(shí)物及模型、概括出柱、錐、臺(tái)、球的結(jié)構(gòu)特征。難點(diǎn):柱、錐、臺(tái)、球的結(jié)構(gòu)特征的概括。三、教學(xué)用具(1)學(xué)法:觀察、思考、交流、討論、概括。(2)實(shí)物模型、投影儀四、教學(xué)思路(一)創(chuàng)設(shè)情景,揭示課題1.教師提出問題:在我們生活周圍中有不少有特色的建筑物,你能舉出一些例子嗎?這些建筑的幾何結(jié)構(gòu)特征如何?引導(dǎo)學(xué)生回憶,舉例和相互交流。教師對(duì)學(xué)生的活動(dòng)及時(shí)給予評(píng)價(jià)。2.所舉的建筑物基本上都是由這些幾何體組合而成的,(展示具有柱、錐、臺(tái)、球結(jié)構(gòu)特征的空間物體),你能通過觀察。根據(jù)某種標(biāo)準(zhǔn)對(duì)這些空間物體進(jìn)行分類嗎?這是我們所要學(xué)習(xí)的內(nèi)容。(二)、研探新知1.引導(dǎo)學(xué)生觀察物體、思考、交流、討論,對(duì)物體進(jìn)行分類,分辯棱柱、圓柱、棱錐。2.觀察棱柱的幾何物件以及投影出棱柱的圖片,它們各自的特點(diǎn)是什么?它們的共同特點(diǎn)是什么?3.組織學(xué)生分組討論,每小組選出一名同學(xué)發(fā)表本組討論結(jié)果。在此基礎(chǔ)上得出棱柱的主要結(jié)構(gòu)特征。(1)有兩個(gè)面互相平行;(2)其余各面都是平行四邊形;(3)每相鄰兩上四邊形的公共邊互相平行。概括出棱柱的概念。4.教師與學(xué)生結(jié)合圖形共同得出棱柱相關(guān)概念以及棱柱的表示。5.提出問題:各種這樣的棱柱,主要有什么不同?可不可以根據(jù)不同對(duì)棱柱分類?請(qǐng)列舉身邊具有已學(xué)過的幾何結(jié)構(gòu)特征的物體,并說出組成這些物體的幾何結(jié)構(gòu)特征?它們由哪些基本幾何體組成的?6.以類似的方法,讓學(xué)生思考、討論、概括出棱錐、棱臺(tái)的結(jié)構(gòu)特征,并得出相關(guān)的概念,分類以及表示。7.讓學(xué)生觀察圓柱,并實(shí)物模型演示,如何得到圓柱,從而概括出圓標(biāo)的概念以及相關(guān)的概念及圓柱的表示。8.引導(dǎo)學(xué)生以類似的方法思考圓錐、圓臺(tái)、球的結(jié)構(gòu)特征,以及相關(guān)概念和表示,借助實(shí)物模型演示引導(dǎo)學(xué)生思考、討論、概括。9.教師指出圓柱和棱柱統(tǒng)稱為柱體,棱臺(tái)與圓臺(tái)統(tǒng)稱為臺(tái)體,圓錐與棱錐統(tǒng)稱為錐體。10.現(xiàn)實(shí)世界中,我們看到的物體大多由具有柱、錐、臺(tái)、球等幾何結(jié)構(gòu)特征的物體組合而成。請(qǐng)列舉身邊具有已學(xué)過的幾何結(jié)構(gòu)特征的物體,并說出組成這些物體的幾何結(jié)構(gòu)特征?它們由哪些基本幾何體組成的?(三)質(zhì)疑答辯,排難解惑,發(fā)展思維,教師提出問題,讓學(xué)生思考。1.有兩個(gè)面互相平行,其余后面都是平行四邊形的幾何體是不是棱柱(舉反例說明,如圖)2.棱柱的何兩個(gè)平面都可以作為棱柱的底面嗎?3.課本P8,習(xí)題1.1A組第1題。4.圓柱可以由矩形旋轉(zhuǎn)得到,圓錐可以由直角三角形旋轉(zhuǎn)得到,圓臺(tái)可以由什么圖形旋轉(zhuǎn)得到?如何旋轉(zhuǎn)?5.棱臺(tái)與棱柱、棱錐有什么關(guān)系?圓臺(tái)與圓柱、圓錐呢?四、鞏固深化練習(xí):課本P7練習(xí)1、2(1)(2)課本P8習(xí)題1.1第2、3、4題五、歸納整理由學(xué)生整理學(xué)習(xí)了哪些內(nèi)容六、布置作業(yè)課本P8練習(xí)題1.1B組第1題課外練習(xí)課本P8習(xí)題1.1B組第2題1.2.1空間幾何體的三視圖(1課時(shí))一、教學(xué)目標(biāo)1.知識(shí)與技能(1)掌握畫三視圖的基本技能(2)豐富學(xué)生的空間想象力2.過程與方法主要通過學(xué)生自己的親身實(shí)踐,動(dòng)手作圖,體會(huì)三視圖的作用。3.情感態(tài)度與價(jià)值觀(1)提高學(xué)生空間想象力(2)體會(huì)三視圖的作用二、教學(xué)重點(diǎn)、難點(diǎn)重點(diǎn):畫出簡單組合體的三視圖難點(diǎn):識(shí)別三視圖所表示的空間幾何體三、學(xué)法與教學(xué)用具1.學(xué)法:觀察、動(dòng)手實(shí)踐、討論、類比2.教學(xué)用具:實(shí)物模型、三角板四、教學(xué)思路(一)創(chuàng)設(shè)情景,揭開課題“橫看成嶺側(cè)看成峰”,這說明從不同的角度看同一物體視覺的效果可能不同,要比較真實(shí)反映出物體,我們可從多角度觀看物體,這堂課我們主要學(xué)習(xí)空間幾何體的三視圖。在初中,我們已經(jīng)學(xué)習(xí)了正方體、長方體、圓柱、圓錐、球的三視圖(正視圖、側(cè)視圖、俯視圖),你能畫出空間幾何體的三視圖嗎?(二)實(shí)踐動(dòng)手作圖1.講臺(tái)上放球、長方體實(shí)物,要求學(xué)生畫出它們的三視圖,教師巡視,學(xué)生畫完后可交流結(jié)果并討論;2.教師引導(dǎo)學(xué)生用類比方法畫出簡單組合體的三視圖(1)畫出球放在長方體上的三視圖(2)畫出礦泉水瓶(實(shí)物放在桌面上)的三視圖學(xué)生畫完后,可把自己的作品展示并與同學(xué)交流,總結(jié)自己的作圖心得。作三視圖之前應(yīng)當(dāng)細(xì)心觀察,認(rèn)識(shí)了它的基本結(jié)構(gòu)特征后,再動(dòng)手作圖。3.三視圖與幾何體之間的相互轉(zhuǎn)化。(1)投影出示圖片(課本P10,圖1.2-3)請(qǐng)同學(xué)們思考圖中的三視圖表示的幾何體是什么?(2)你能畫出圓臺(tái)的三視圖嗎?(3)三視圖對(duì)于認(rèn)識(shí)空間幾何體有何作用?你有何體會(huì)?教師巡視指導(dǎo),解答學(xué)生在學(xué)習(xí)中遇到的困難,然后讓學(xué)生發(fā)表對(duì)上述問題的看法。4.請(qǐng)同學(xué)們畫出1.2-4中其他物體表示的空間幾何體的三視圖,并與其他同學(xué)交流。(三)鞏固練習(xí)課本P12練習(xí)1、2P18習(xí)題1.2A組1(四)歸納整理請(qǐng)學(xué)生回顧發(fā)表如何作好空間幾何體的三視圖(五)課外練習(xí)1.自己動(dòng)手制作一個(gè)底面是正方形,側(cè)面是全等的三角形的棱錐模型,并畫出它的三視圖。2.自己制作一個(gè)上、下底面都是相似的正三角形,側(cè)面是全等的等腰梯形的棱臺(tái)模型,并畫出它的三視圖。1.2.2空間幾何體的直觀圖(1課時(shí))一、教學(xué)目標(biāo)1.知識(shí)與技能(1)掌握斜二測(cè)畫法畫水平設(shè)置的平面圖形的直觀圖。(2)采用對(duì)比的方法了解在平行投影下畫空間圖形與在中心投影下畫空間圖形兩種方法的各自特點(diǎn)。2.過程與方法學(xué)生通過觀察和類比,利用斜二測(cè)畫法畫出空間幾何體的直觀圖。3.情感態(tài)度與價(jià)值觀(1)提高空間想象力與直觀感受。(2)體會(huì)對(duì)比在學(xué)習(xí)中的作用。(3)感受幾何作圖在生產(chǎn)活動(dòng)中的應(yīng)用。二、教學(xué)重點(diǎn)、難點(diǎn)重點(diǎn)、難點(diǎn):用斜二測(cè)畫法畫空間幾何值的直觀圖。三、學(xué)法與教學(xué)用具1.學(xué)法:學(xué)生通過作圖感受圖形直觀感,并自然采用斜二測(cè)畫法畫空間幾何體的過程。2.教學(xué)用具:三角板、圓規(guī)四、教學(xué)思路(一)創(chuàng)設(shè)情景,揭示課題1.我們都學(xué)過畫畫,這節(jié)課我們畫一物體:圓柱把實(shí)物圓柱放在講臺(tái)上讓學(xué)生畫。2.學(xué)生畫完后展示自己的結(jié)果并與同學(xué)交流,比較誰畫的效果更好,思考怎樣才能畫好物體的直觀圖呢?這是我們這節(jié)主要學(xué)習(xí)的內(nèi)容。(二)研探新知1.例1,用斜二測(cè)畫法畫水平放置的正六邊形的直觀圖,由學(xué)生閱讀理解,并思考斜二測(cè)畫法的關(guān)鍵步驟,學(xué)生發(fā)表自己的見解,教師及時(shí)給予點(diǎn)評(píng)。畫水平放置的多邊形的直觀圖的關(guān)鍵是確定多邊形頂點(diǎn)的位置,因?yàn)槎噙呅雾旤c(diǎn)的位置一旦確定,依次連結(jié)這些頂點(diǎn)就可畫出多邊形來,因此平面多邊形水平放置時(shí),直觀圖的畫法可以歸結(jié)為確定點(diǎn)的位置的畫法。強(qiáng)調(diào)斜二測(cè)畫法的步驟。練習(xí)反饋根據(jù)斜二測(cè)畫法,畫出水平放置的正五邊形的直觀圖,讓學(xué)生獨(dú)立完成后,教師檢查。2.例2,用斜二測(cè)畫法畫水平放置的圓的直觀圖教師引導(dǎo)學(xué)生與例1進(jìn)行比較,與畫水平放置的多邊形的直觀圖一樣,畫水平放置的圓的直觀圖,也是要先畫出一些有代表性的點(diǎn),由于不能像多邊那樣直接以頂點(diǎn)為代表點(diǎn),因此需要自己構(gòu)造出一些點(diǎn)。教師組織學(xué)生思考、討論和交流,如何構(gòu)造出需要的一些點(diǎn),與學(xué)生共同完成例2并詳細(xì)板書畫法。3.探求空間幾何體的直觀圖的畫法(1)例3,用斜二測(cè)畫法畫長、寬、高分別是4cm、3cm、2cm的長方體ABCD-A’B’C’D’的直觀圖。教師引導(dǎo)學(xué)生完成,要注意對(duì)每一步驟提出嚴(yán)格要求,讓學(xué)生按部就班地畫好每一步,不能敷衍了事。(2)投影出示幾何體的三視圖、課本P15圖1.2-9,請(qǐng)說出三視圖表示的幾何體?并用斜二測(cè)畫法畫出它的直觀圖。教師組織學(xué)生思考,討論和交流完成,教師巡視幫不懂的同學(xué)解疑,引導(dǎo)學(xué)生正確把握?qǐng)D形尺寸大小之間的關(guān)系。4.平行投影與中心投影投影出示課本P17圖1.2-12,讓學(xué)生觀察比較概括在平行投影下畫空間圖形與在中心投影下畫空間圖形的各自特點(diǎn)。5.鞏固練習(xí),課本P16練習(xí)1(1),2,3,4三、歸納整理學(xué)生回顧斜二測(cè)畫法的關(guān)鍵與步驟四、作業(yè)1.書畫作業(yè),課本P17練習(xí)第5題2.課外思考課本P16,探究(1)(2)1.3.1柱體、錐體、臺(tái)體的表面積與體積一、教學(xué)目標(biāo)1、知識(shí)與技能(1)通過對(duì)柱、錐、臺(tái)體的研究,掌握柱、錐、臺(tái)的表面積和體積的求法。(2)能運(yùn)用公式求解,柱體、錐體和臺(tái)全的全積,并且熟悉臺(tái)體與術(shù)體和錐體之間的轉(zhuǎn)換關(guān)系。(3)培養(yǎng)學(xué)生空間想象能力和思維能力。2、過程與方法(1)讓學(xué)生經(jīng)歷幾何全的側(cè)面展一過程,感知幾何體的形狀。(2)讓學(xué)生通對(duì)照比較,理順柱體、錐體、臺(tái)體三間的面積和體積的關(guān)系。3、情感與價(jià)值通過學(xué)習(xí),使學(xué)生感受到幾何體面積和體積的求解過程,對(duì)自己空間思維能力影響。從而增強(qiáng)學(xué)習(xí)的積極性。二、教學(xué)重點(diǎn)、難點(diǎn)重點(diǎn):柱體、錐體、臺(tái)體的表面積和體積計(jì)算難點(diǎn):臺(tái)體體積公式的推導(dǎo)三、學(xué)法與教學(xué)用具1、學(xué)法:學(xué)生通過閱讀教材,自主學(xué)習(xí)、思考、交流、討論和概括,通過剖析實(shí)物幾何體感受幾何體的特征,從而更好地完成本節(jié)課的教學(xué)目標(biāo)。2、教學(xué)用具:實(shí)物幾何體,投影儀四、教學(xué)設(shè)想1、創(chuàng)設(shè)情境(1)教師提出問題:在過去的學(xué)習(xí)中,我們已經(jīng)接觸過一些幾何體的面積和體積的求法及公式,哪些幾何體可以求出表面積和體積?引導(dǎo)學(xué)生回憶,互相交流,教師歸類。(2)教師設(shè)疑:幾何體的表面積等于它的展開圈的面積,那么,柱體,錐體,臺(tái)體的側(cè)面展開圖是怎樣的?你能否計(jì)算?引入本節(jié)內(nèi)容。2、探究新知(1)利用多媒體設(shè)備向?qū)W生投放正棱柱、正三棱錐和正三棱臺(tái)的側(cè)面展開圖(2)組織學(xué)生分組討論:這三個(gè)圖形的表面由哪些平面圖形構(gòu)成?表面積如何求?(3)教師對(duì)學(xué)生討論歸納的結(jié)果進(jìn)行點(diǎn)評(píng)。3、質(zhì)疑答辯、排難解惑、發(fā)展思維(1)教師引導(dǎo)學(xué)生探究圓柱、圓錐、圓臺(tái)的側(cè)面展開圖的結(jié)構(gòu),并歸納出其表面積的計(jì)算公式:r1為上底半徑r為下底半徑l為母線長(2)組織學(xué)生思考圓臺(tái)的表面積公式與圓柱及圓錐表面積公式之間的變化關(guān)系。(3)教師引導(dǎo)學(xué)生探究:如何把一個(gè)三棱柱分割成三個(gè)等體積的棱錐?由此加深學(xué)生對(duì)等底、等高的錐體與柱體體積之間的關(guān)系的了解。如圖:(4)教師指導(dǎo)學(xué)生思考,比較柱體、錐體,臺(tái)體的體積公式之間存在的關(guān)系。(s’,s分別我上下底面面積,h為臺(tái)柱高)4、例題分析講解(課本)例1、例2、例35、鞏固深化、反饋矯正教師投影練習(xí)1、已知圓錐的表面積為a㎡,且它的側(cè)面展開圖是一個(gè)半圓,則這個(gè)圓錐的底面直徑為。(答案:)2、棱臺(tái)的兩個(gè)底面面積分別是245c㎡和80c㎡,截得這個(gè)棱臺(tái)的棱錐的高為35cm,求這個(gè)棱臺(tái)的體積。(答案:2325cm3)6、課堂小結(jié)本節(jié)課學(xué)習(xí)了柱體、錐體與臺(tái)體的表面積和體積的結(jié)構(gòu)和求解方法及公式。用聯(lián)系的關(guān)點(diǎn)看待三者之間的關(guān)系,更加方便于我們對(duì)空間幾何體的了解和掌握。7、評(píng)價(jià)設(shè)計(jì)習(xí)題1.3A組1.3§1.3.2球的體積和表面積教學(xué)目標(biāo)知識(shí)與技能⑴通過對(duì)球的體積和面積公式的推導(dǎo),了解推導(dǎo)過程中所用的基本數(shù)學(xué)思想方法:“分割——求和——化為準(zhǔn)確和”,有利于同學(xué)們進(jìn)一步學(xué)習(xí)微積分和近代數(shù)學(xué)知識(shí)。⑵能運(yùn)用球的面積和體積公式靈活解決實(shí)際問題。⑶培養(yǎng)學(xué)生的空間思維能力和空間想象能力。過程與方法通過球的體積和面積公式的推導(dǎo),從而得到一種推導(dǎo)球體積公式V=πR3和面積公式S=4πR2的方法,即“分割求近似值,再由近似和轉(zhuǎn)化為球的體積和面積”的方法,體現(xiàn)了極限思想。情感與價(jià)值觀通過學(xué)習(xí),使我們對(duì)球的體積和面積公式的推導(dǎo)方法有了一定的了解,提高了空間思維能力和空間想象能力,增強(qiáng)了我們探索問題和解決問題的信心。教學(xué)重點(diǎn)、難點(diǎn)重點(diǎn):引導(dǎo)學(xué)生了解推導(dǎo)球的體積和面積公式所運(yùn)用的基本思想方法。難點(diǎn):推導(dǎo)體積和面積公式中空間想象能力的形成。學(xué)法和教學(xué)用具學(xué)法:學(xué)生通過閱讀教材,發(fā)揮空間想象能力,了解并初步掌握“分割、求近似值的、再由近似值的和轉(zhuǎn)化為球的體積和面積”的解題方法和步驟。教學(xué)用具:投影儀教學(xué)設(shè)計(jì)創(chuàng)設(shè)情景⑴教師提出問題:球既沒有底面,也無法像在柱體、錐體和臺(tái)體那樣展開成平面圖形,那么怎樣來求球的表面積與體積呢?引導(dǎo)學(xué)生進(jìn)行思考。⑵教師設(shè)疑:球的大小是與球的半徑有關(guān),如何用球半徑來表示球的體積和面積?激發(fā)學(xué)生推導(dǎo)球的體積和面積公式。探究新知1.球的體積:如果用一組等距離的平面去切割球,當(dāng)距離很小之時(shí)得到很多“小圓片”,“小圓片”的體積的體積之和正好是球的體積,由于“小圓片”近似于圓柱形狀,所以它的體積也近似于圓柱形狀,所以它的體積有也近似于相應(yīng)的圓柱和體積,因此求球的體積可以按“分割——求和——化為準(zhǔn)確和”的方法來進(jìn)行。步驟:第一步:分割如圖:把半球的垂直于底面的半徑OA作n等分,過這些等分點(diǎn),用一組平行于底面的平面把半球切割成n個(gè)“小圓片”,“小圓片”厚度近似為,底面是“小圓片”的底面。如圖:得第二步:求和第三步:化為準(zhǔn)確的和當(dāng)n→∞時(shí),→0(同學(xué)們討論得出)所以得到定理:半徑是R的球的體積練習(xí):一種空心鋼球的質(zhì)量是142g,外徑是5cm,求它的內(nèi)徑(鋼的密度是7.9g/cm3)2.球的表面積:球的表面積是球的表面大小的度量,它也是球半徑R的函數(shù),由于球面是不可展的曲面,所以不能像推導(dǎo)圓柱、圓錐的表面積公式那樣推導(dǎo)球的表面積公式,所以仍然用“分割、求近似和,再由近似和轉(zhuǎn)化為準(zhǔn)確和”方法推導(dǎo)。思考:推導(dǎo)過程是以什么量作為等量變換的?半徑為R的球的表面積為S=4πR2練習(xí):長方體的一個(gè)頂點(diǎn)上三條棱長分別為3、4、5,是它的八個(gè)頂點(diǎn)都在同一球面上,則這個(gè)球的表面積是。(答案50元)典例分析課本P47例4和P29例5鞏固深化、反饋矯正⑴正方形的內(nèi)切球和外接球的體積的比為,表面積比為。(答案:;3:1)⑵在球心同側(cè)有相距9cm的兩個(gè)平行截面,它們的面積分別為49πcm2和400πcm2,求球的表面積。(答案:2500πcm2)分析:可畫出球的軸截面,利用球的截面性質(zhì)求球的半徑課堂小結(jié)本節(jié)課主要學(xué)習(xí)了球的體積和球的表面積公式的推導(dǎo),以及利用公式解決相關(guān)的球的問題,了解了推導(dǎo)中的“分割、求近似和,再由近似和轉(zhuǎn)化為準(zhǔn)確和”的解題方法。評(píng)價(jià)設(shè)計(jì)作業(yè)P30練習(xí)1、3,B(1)第二章直線與平面的位置關(guān)系§2.1.1平面一、教學(xué)目標(biāo):1、知識(shí)與技能(1)利用生活中的實(shí)物對(duì)平面進(jìn)行描述;(2)掌握平面的表示法及水平放置的直觀圖;(3)掌握平面的基本性質(zhì)及作用;(4)培養(yǎng)學(xué)生的空間想象能力。2、過程與方法(1)通過師生的共同討論,使學(xué)生對(duì)平面有了感性認(rèn)識(shí);(2)讓學(xué)生歸納整理本節(jié)所學(xué)知識(shí)。3、情感與價(jià)值使用學(xué)生認(rèn)識(shí)到我們所處的世界是一個(gè)三維空間,進(jìn)而增強(qiáng)了學(xué)習(xí)的興趣。二、教學(xué)重點(diǎn)、難點(diǎn)重點(diǎn):1、平面的概念及表示;2、平面的基本性質(zhì),注意他們的條件、結(jié)論、作用、圖形語言及符號(hào)語言。難點(diǎn):平面基本性質(zhì)的掌握與運(yùn)用。三、學(xué)法與教學(xué)用具1、學(xué)法:學(xué)生通過閱讀教材,聯(lián)系身邊的實(shí)物思考、交流,師生共同討論等,從而較好地完成本節(jié)課的教學(xué)目標(biāo)。2、教學(xué)用具:投影儀、投影片、正(長)方形模型、三角板四、教學(xué)思想(一)實(shí)物引入、揭示課題師:生活中常見的如黑板、平整的操場(chǎng)、桌面、平靜的湖面等等,都給我們以平面的印象,你們能舉出更多例子嗎?引導(dǎo)學(xué)生觀察、思考、舉例和互相交流。與此同時(shí),教師對(duì)學(xué)生的活動(dòng)給予評(píng)價(jià)。師:那么,平面的含義是什么呢?這就是我們這節(jié)課所要學(xué)習(xí)的內(nèi)容。(二)研探新知1、平面含義師:以上實(shí)物都給我們以平面的印象,幾何里所說的平面,就是從這樣的一些物體中抽象出來的,但是,幾何里的平面是無限延展的。2、平面的畫法及表示師:在平面幾何中,怎樣畫直線?(一學(xué)生上黑板畫)之后教師加以肯定,解說、類比,將知識(shí)遷移,得出平面的畫法:水平放置的平面通常畫成一個(gè)平行四邊形,銳角畫成450,且橫邊畫成鄰邊的2倍長(如圖)DDCBAα平面通常用希臘字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四邊形的四個(gè)頂點(diǎn)或者相對(duì)的兩個(gè)頂點(diǎn)的大寫字母來表示,如平面AC、平面ABCD等。如果幾個(gè)平面畫在一起,當(dāng)一個(gè)平面的一部分被另一個(gè)平面遮住時(shí),應(yīng)畫成虛線或不畫(打出投影片)αβαβαβ··B·B·A·B·Aα平面內(nèi)有無數(shù)個(gè)點(diǎn),平面可以看成點(diǎn)的集合。α點(diǎn)A在平面α內(nèi),記作:A∈α點(diǎn)B在平面α外,記作:Bα2.1-43、平面的基本性質(zhì)教師引導(dǎo)學(xué)生思考教材P41的思考題,讓學(xué)生充分發(fā)表自己的見解。師:把一把直尺邊緣上的任意兩點(diǎn)放在桌邊,可以看到,直尺的整個(gè)邊緣就落在了桌面上,用事實(shí)引導(dǎo)學(xué)生歸納出以下公理公理1:如果一條直線上的兩點(diǎn)在一個(gè)平面內(nèi),那么這條直線在此平面內(nèi)(教師引導(dǎo)學(xué)生閱讀教材P42前幾行相關(guān)內(nèi)容,并加以解析)符號(hào)表示為LA·αALA·αB∈L=>LαA∈αB∈α公理1作用:判斷直線是否在平面內(nèi)師:生活中,我們看到三腳架可以牢固地支撐照相機(jī)或測(cè)量用的平板儀等等……引導(dǎo)學(xué)生歸納出公理2C·BC·B·A·α符號(hào)表示為:A、B、C三點(diǎn)不共線=>有且只有一個(gè)平面α,使A∈α、B∈α、C∈α。公理2作用:確定一個(gè)平面的依據(jù)。教師用正(長)方形模型,讓學(xué)生理解兩個(gè)平面的交線的含義。引導(dǎo)學(xué)生閱讀P42的思考題,從而歸納出公理3P·P·αLβ符號(hào)表示為:P∈α∩β=>α∩β=L,且P∈L公理3作用:判定兩個(gè)平面是否相交的依據(jù)4、教材P43例1通過例子,讓學(xué)生掌握?qǐng)D形中點(diǎn)、線、面的位置關(guān)系及符號(hào)的正確使用。5、課堂練習(xí):課本P44練習(xí)1、2、3、46、課時(shí)小結(jié):(師生互動(dòng),共同歸納)(1)本節(jié)課我們學(xué)習(xí)了哪些知識(shí)內(nèi)容?(2)三個(gè)公理的內(nèi)容及作用是什么?7、作業(yè)布置(1)復(fù)習(xí)本節(jié)課內(nèi)容;(2)預(yù)習(xí):同一平面內(nèi)的兩條直線有幾種位置關(guān)系?§2.1.2空間中直線與直線之間的位置關(guān)系一、教學(xué)目標(biāo):1、知識(shí)與技能(1)了解空間中兩條直線的位置關(guān)系;(2)理解異面直線的概念、畫法,培養(yǎng)學(xué)生的空間想象能力;(3)理解并掌握公理4;(4)理解并掌握等角定理;(5)異面直線所成角的定義、范圍及應(yīng)用。2、過程與方法(1)師生的共同討論與講授法相結(jié)合;(2)讓學(xué)生在學(xué)習(xí)過程不斷歸納整理所學(xué)知識(shí)。3、情感與價(jià)值讓學(xué)生感受到掌握空間兩直線關(guān)系的必要性,提高學(xué)生的學(xué)習(xí)興趣。二、教學(xué)重點(diǎn)、難點(diǎn)重點(diǎn):1、異面直線的概念;2、公理4及等角定理。難點(diǎn):異面直線所成角的計(jì)算。三、學(xué)法與教學(xué)用具1、學(xué)法:學(xué)生通過閱讀教材、思考與教師交流、概括,從而較好地完成本節(jié)課的教學(xué)目標(biāo)。2、教學(xué)用具:投影儀、投影片、長方體模型、三角板四、教學(xué)思想(一)創(chuàng)設(shè)情景、導(dǎo)入課題1、通過身邊諸多實(shí)物,引導(dǎo)學(xué)生思考、舉例和相互交流得出異面直線的概念:不同在任何一個(gè)平面內(nèi)的兩條直線叫做異面直線。2、師:那么,空間兩條直線有多少種位置關(guān)系?(板書課題)(二)講授新課1、教師給出長方體模型,引導(dǎo)學(xué)生得出空間的兩條直線有如下三種關(guān)系:共面直線相交直線:同一平面內(nèi),有且只有一個(gè)公共點(diǎn);共面直線平行直線:同一平面內(nèi),沒有公共點(diǎn);異面直線:不同在任何一個(gè)平面內(nèi),沒有公共點(diǎn)。教師再次強(qiáng)調(diào)異面直線不共面的特點(diǎn),作圖時(shí)通常用一個(gè)或兩個(gè)平面襯托,如下圖:2、(1)師:在同一平面內(nèi),如果兩條直線都與第三條直線平行,那么這兩條直線互相平行。在空間中,是否有類似的規(guī)律?組織學(xué)生思考:長方體ABCD-A'B'C'D'中,BB'∥AA',DD'∥AA',BB'與DD'平行嗎?生:平行再聯(lián)系其他相應(yīng)實(shí)例歸納出公理4公理4:平行于同一條直線的兩條直線互相平行。符號(hào)表示為:設(shè)a、b、c是三條直線=>a∥ca=>a∥cc∥b強(qiáng)調(diào):公理4實(shí)質(zhì)上是說平行具有傳遞性,在平面、空間這個(gè)性質(zhì)都適用。公理4作用:判斷空間兩條直線平行的依據(jù)。(2)例2(投影片)例2的講解讓學(xué)生掌握了公理4的運(yùn)用(3)教材P47探究讓學(xué)生在思考和交流中提升了對(duì)公理4的運(yùn)用能力。3、組織學(xué)生思考教材P47的思考題(投影)讓學(xué)生觀察、思考:∠ADC與A'D'C'、∠ADC與∠A'B'C'的兩邊分別對(duì)應(yīng)平行,這兩組角的大小關(guān)系如何?生:∠ADC=A'D'C',∠ADC+∠A'B'C'=1800教師畫出更具一般性的圖形,師生共同歸納出如下定理等角定理:空間中如果兩個(gè)角的兩邊分別對(duì)應(yīng)平行,那么這兩個(gè)角相等或互補(bǔ)。教師強(qiáng)調(diào):并非所有關(guān)于平面圖形的結(jié)論都可以推廣到空間中來。4、以教師講授為主,師生共同交流,導(dǎo)出異面直線所成的角的概念。(1)師:如圖,已知異面直線a、b,經(jīng)過空間中任一點(diǎn)O作直線a'∥a、b'∥b,我們把a(bǔ)'與b'所成的銳角(或直角)叫異面直線a與b所成的角(夾角)。(2)強(qiáng)調(diào):①a'與b'所成的角的大小只由a、b的相互位置來確定,與O的選擇無關(guān),為了簡便,點(diǎn)O一般取在兩直線中的一條上;②兩條異面直線所成的角θ∈(0,);③當(dāng)兩條異面直線所成的角是直角時(shí),我們就說這兩條異面直線互相垂直,記作a⊥b;④兩條直線互相垂直,有共面垂直與異面垂直兩種情形;⑤計(jì)算中,通常把兩條異面直線所成的角轉(zhuǎn)化為兩條相交直線所成的角。(3)例3(投影)例3的給出讓學(xué)生掌握了如何求異面直線所成的角,從而鞏固了所學(xué)知識(shí)。(三)課堂練習(xí)教材P49練習(xí)1、2充分調(diào)動(dòng)學(xué)生動(dòng)手的積極性,教師適時(shí)給予肯定。(四)課堂小結(jié)在師生互動(dòng)中讓學(xué)生了解:(1)本節(jié)課學(xué)習(xí)了哪些知識(shí)內(nèi)容?(2)計(jì)算異面直線所成的角應(yīng)注意什么?(五)課后作業(yè)1、判斷題:(1)a∥bc⊥a=>c⊥b()(1)a⊥cb⊥c=>a⊥b()2、填空題:在正方體ABCD-A'B'C'D'中,與BD'成異面直線的有________條?!?.1.3—2.1.4空間中直線與平面、平面與平面之間的位置關(guān)系一、教學(xué)目標(biāo):1、知識(shí)與技能(1)了解空間中直線與平面的位置關(guān)系;(2)了解空間中平面與平面的位置關(guān)系;(3)培養(yǎng)學(xué)生的空間想象能力。2、過程與方法(1)學(xué)生通過觀察與類比加深了對(duì)這些位置關(guān)系的理解、掌握;(2)讓學(xué)生利用已有的知識(shí)與經(jīng)驗(yàn)歸納整理本節(jié)所學(xué)知識(shí)。二、教學(xué)重點(diǎn)、難點(diǎn)重點(diǎn):空間直線與平面、平面與平面之間的位置關(guān)系。難點(diǎn):用圖形表達(dá)直線與平面、平面與平面的位置關(guān)系。三、學(xué)法與教學(xué)用具1、學(xué)法:學(xué)生借助實(shí)物,通過觀察、類比、思考等,較好地完成本節(jié)課的教學(xué)目標(biāo)。2、教學(xué)用具:投影儀、投影片、長方體模型四、教學(xué)思想(一)創(chuàng)設(shè)情景、導(dǎo)入課題教師以生活中的實(shí)例以及課本P49的思考題為載體,提出了:空間中直線與平面有多少種位置關(guān)系?(板書課題)(二)研探新知1、引導(dǎo)學(xué)生觀察、思考身邊的實(shí)物,從而直觀、準(zhǔn)確地歸納出直線與平面有三種位置關(guān)系:(1)直線在平面內(nèi)——有無數(shù)個(gè)公共點(diǎn)(2)直線與平面相交——有且只有一個(gè)公共點(diǎn)(3)直線在平面平行——沒有公共點(diǎn)指出:直線與平面相交或平行的情況統(tǒng)稱為直線在平面外,可用aα來表示aαa∩α=Aa∥α例4(投影)師生共同完成例4例4的給出加深了學(xué)生對(duì)這幾種位置關(guān)系的理解。2、引導(dǎo)學(xué)生對(duì)生活實(shí)例以及對(duì)長方體模型的觀察、思考,準(zhǔn)確歸納出兩個(gè)平面之間有兩種位置關(guān)系:(1)兩個(gè)平面平行——沒有公共點(diǎn)(2)兩個(gè)平面相交——有且只有一條公共直線用類比的方法,學(xué)生很快地理解與掌握了新內(nèi)容,這兩種位置關(guān)系用圖形表示為αβαβLαβα∥βα∩β=L教師指出:畫兩個(gè)相互平行的平面時(shí),要注意使表示平面的兩個(gè)平行四邊形的對(duì)應(yīng)邊平行。教材P51探究讓學(xué)生獨(dú)立思考,稍后教師作指導(dǎo),加深學(xué)生對(duì)這兩種位置關(guān)系的理解教材P51練習(xí)學(xué)生獨(dú)立完成后教師檢查、指導(dǎo)(三)歸納整理、整體認(rèn)識(shí)教師引導(dǎo)學(xué)生歸納,整理本節(jié)課的知識(shí)脈絡(luò),提升他們掌握知識(shí)的層次。(四)作業(yè)1、讓學(xué)生回去整理這三節(jié)課的內(nèi)容,理清脈絡(luò)。2、教材P52習(xí)題2.1A組第5題§2.2.1直線與平面平行的判定一、教學(xué)目標(biāo):1、知識(shí)與技能(1)理解并掌握直線與平面平行的判定定理;(2)進(jìn)一步培養(yǎng)學(xué)生觀察、發(fā)現(xiàn)的能力和空間想象能力;2、過程與方法學(xué)生通過觀察圖形,借助已有知識(shí),掌握直線與平面平行的判定定理。3、情感、態(tài)度與價(jià)值觀(1)讓學(xué)生在發(fā)現(xiàn)中學(xué)習(xí),增強(qiáng)學(xué)習(xí)的積極性;(2)讓學(xué)生了解空間與平面互相轉(zhuǎn)換的數(shù)學(xué)思想。二、教學(xué)重點(diǎn)、難點(diǎn)重點(diǎn)、難點(diǎn):直線與平面平行的判定定理及應(yīng)用。三、學(xué)法與教學(xué)用具1、學(xué)法:學(xué)生借助實(shí)例,通過觀察、思考、交流、討論等,理解判定定理。2、教學(xué)用具:投影儀(片)四、教學(xué)思想(一)創(chuàng)設(shè)情景、揭示課題引導(dǎo)學(xué)生觀察身邊的實(shí)物,如教材第55頁觀察題:封面所在直線與桌面所在平面具有什么樣的位置關(guān)系?如何去確定這種關(guān)系呢?這就是我們本節(jié)課所要學(xué)習(xí)的內(nèi)容。(二)研探新知αaαa直線a與平面α平行嗎?ααab若α內(nèi)有直線b與a平行,那么α與a的位置關(guān)系如何?是否可以保證直線a與平面α平行?學(xué)生思考后,師生共同探討,得出以下結(jié)論直線與平面平行的判定定理:平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行。簡記為:線線平行,則線面平行。符號(hào)表示:aαbβ=>a∥αa∥b2、例1引導(dǎo)學(xué)生思考后,師生共同完成該例是判定定理的應(yīng)用,讓學(xué)生掌握將空間問題轉(zhuǎn)化為平面問題的化歸思想。(三)自主學(xué)習(xí)、發(fā)展思維練習(xí):教材第57頁1、2題讓學(xué)生獨(dú)立完成,教師檢查、指導(dǎo)、講評(píng)。(四)歸納整理1、同學(xué)們?cè)谶\(yùn)用該判定定理時(shí)應(yīng)注意什么?2、在解決空間幾何問題時(shí),常將之轉(zhuǎn)換為平面幾何問題。(五)作業(yè)1、教材第64頁習(xí)題2.2A組第3題;2、預(yù)習(xí):如何判定兩個(gè)平面平行?§2.2.2平面與平面平行的判定一、教學(xué)目標(biāo):1、知識(shí)與技能理解并掌握兩平面平行的判定定理。2、過程與方法讓學(xué)生通過觀察實(shí)物及模型,得出兩平面平行的判定。3、情感、態(tài)度與價(jià)值觀進(jìn)一步培養(yǎng)學(xué)生空間問題平面化的思想。二、教學(xué)重點(diǎn)、難點(diǎn)重點(diǎn):兩個(gè)平面平行的判定。難點(diǎn):判定定理、例題的證明。三、學(xué)法與教學(xué)用具1、學(xué)法:學(xué)生借助實(shí)物,通過觀察、類比、思考、探討,教師予以啟發(fā),得出兩平面平行的判定。2、教學(xué)用具:投影儀、投影片、長方體模型四、教學(xué)思想(一)創(chuàng)設(shè)情景、引入課題引導(dǎo)學(xué)生觀察、思考教材第57頁的觀察題,導(dǎo)入本節(jié)課所學(xué)主題。(二)研探新知1、問題:(1)平面β內(nèi)有一條直線與平面α平行,α、β平行嗎?(2)平面β內(nèi)有兩條直線與平面α平行,α、β平行嗎?通過長方體模型,引導(dǎo)學(xué)生觀察、思考、交流,得出結(jié)論。兩個(gè)平面平行的判定定理:一個(gè)平面內(nèi)的兩條交直線與另一個(gè)平面平行,則這兩個(gè)平面平行。符號(hào)表示:aβbβa∩b=Pβ∥αa∥αb∥α教師指出:判斷兩平面平行的方法有三種:(1)用定義;(2)判定定理;(3)垂直于同一條直線的兩個(gè)平面平行。2、例2引導(dǎo)學(xué)生思考后,教師講授。例子的給出,有利于學(xué)生掌握該定理的應(yīng)用。(三)自主學(xué)習(xí)、加深認(rèn)識(shí)練習(xí):教材第59頁1、2、3題。學(xué)生先獨(dú)立完成后,教師指導(dǎo)講評(píng)。(四)歸納整理、整體認(rèn)識(shí)1、判定定理中的線與線、線與面應(yīng)具備什么條件?2、在本節(jié)課的學(xué)習(xí)過程中,還有哪些不明白的地方,請(qǐng)向老師提出。(五)作業(yè)布置第65頁習(xí)題2.2A組第7題?!?.2.3—2.2.4直線與平面、平面與平面平行的性質(zhì)一、教學(xué)目標(biāo):1、知識(shí)與技能(1)掌握直線與平面平行的性質(zhì)定理及其應(yīng)用;(2)掌握兩個(gè)平面平行的性質(zhì)定理及其應(yīng)用。2、過程與方法學(xué)生通過觀察與類比,借助實(shí)物模型理解性質(zhì)及應(yīng)用。3、情感、態(tài)度與價(jià)值觀(1)進(jìn)一步提高學(xué)生空間想象能力、思維能力;(2)進(jìn)一步體會(huì)類比的作用;(3)進(jìn)一步滲透等價(jià)轉(zhuǎn)化的思想。二、教學(xué)重點(diǎn)、難點(diǎn)重點(diǎn):兩個(gè)性質(zhì)定理。難點(diǎn):(1)性質(zhì)定理的證明;(2)性質(zhì)定理的正確運(yùn)用。三、學(xué)法與教學(xué)用具1、學(xué)法:學(xué)生借助實(shí)物,通過類比、交流等,得出性質(zhì)及基本應(yīng)用。2、教學(xué)用具:投影儀、投影片、長方體模型四、教學(xué)思想(一)創(chuàng)設(shè)情景、引入新課1、思考題:教材第60頁,思考(1)(2)學(xué)生思考、交流,得出(1)一條直線與平面平行,并不能保證這個(gè)平面內(nèi)的所有直線都與這個(gè)直線平行;(2)直線a與平面α平行,過直線a的某一平面,若與平面α相交,則直線a就平行于這條交線。在教師的啟發(fā)下,師生共同完成該結(jié)論的證明過程。于是,得到直線與平面平行的性質(zhì)定理。定理:一條直線與一個(gè)平面平行,則過這條直線的任一平面與此平面的交線與該直線平行。簡記為:線面平行則線線平行。符號(hào)表示:a∥αaβa∥bα∩β=b作用:利用該定理可解決直線間的平行問題。2、例3培養(yǎng)學(xué)生思維,動(dòng)手能力,激發(fā)學(xué)習(xí)興趣。例4性質(zhì)定理的直接應(yīng)用,它滲透著化歸思想,教師應(yīng)多做引導(dǎo)。3、思考:如果兩個(gè)平面平行,那么一個(gè)平面內(nèi)的直線與另一個(gè)平面內(nèi)的直線具有什么樣的位置關(guān)系?學(xué)生借助長方體模型思考、交流得出結(jié)論:異面或平行。再問:平面AC內(nèi)哪些直線與B'D'平行?怎么找?在教師的啟發(fā)下,師生共同完成該結(jié)論及證明過程,于是得到兩個(gè)平面平行的性質(zhì)定理。定理:如果兩個(gè)平面同時(shí)與第三個(gè)平面相交,那么它們的交線平行。符號(hào)表示:α∥βα∩γ=aa∥bβ∩γ=b教師指出:可以由平面與平面平行得出直線與直線平行4、例5以講授為主,引導(dǎo)學(xué)生共同完成,逐步培養(yǎng)學(xué)生應(yīng)用定理解題的能力。(三)自主學(xué)習(xí)、鞏固知識(shí)練習(xí):課本第63頁學(xué)生獨(dú)立完成,教師進(jìn)行糾正。(四)歸納整理、整體認(rèn)識(shí)1、通過對(duì)兩個(gè)性質(zhì)定理的學(xué)習(xí),大家應(yīng)注意些什么?2、本節(jié)課涉及到哪些主要的數(shù)學(xué)思想方法?(五)布置作業(yè)課本第65頁習(xí)題2.2A組第6題。§2.3.1直線與平面垂直的判定一、教學(xué)目標(biāo)1、知識(shí)與技能(1)使學(xué)生掌握直線和平面垂直的定義及判定定理;(2)使學(xué)生掌握判定直線和平面垂直的方法;(3)培養(yǎng)學(xué)生的幾何直觀能力,使他們?cè)谥庇^感知,操作確認(rèn)的基礎(chǔ)上學(xué)會(huì)歸納、概括結(jié)論。2、過程與方法(1)通過教學(xué)活動(dòng),使學(xué)生了解,感受直線和平面垂直的定義的形成過程;(2)探究判定直線與平面垂直的方法。3、情態(tài)與價(jià)值培養(yǎng)學(xué)生學(xué)會(huì)從“感性認(rèn)識(shí)”到“理性認(rèn)識(shí)”過程中獲取新知。二、教學(xué)重點(diǎn)、難點(diǎn)直線與平面垂直的定義和判定定理的探究。三、教學(xué)設(shè)計(jì)(一)創(chuàng)設(shè)情景,揭示課題1、教師首先提出問題:在現(xiàn)實(shí)生活中,我們經(jīng)??吹揭恍┲本€與平面垂直的現(xiàn)象,例如:“旗桿與地面,大橋的橋柱和水面等的位置關(guān)系”,你能舉出一些類似的例子嗎?然后讓學(xué)生回憶、思考、討論、教師對(duì)學(xué)生的活動(dòng)給予評(píng)價(jià)。2、接著教師指出:一條直線與一個(gè)平面垂直的意義是什么?并通過分析旗桿與它在地面上的射影的位置關(guān)系引出課題內(nèi)容。(二)研探新知1、為使學(xué)生學(xué)會(huì)從“感性認(rèn)識(shí)”到“理性認(rèn)識(shí)”過程中獲取新知,可再借助長方體模型讓學(xué)生感知直線與平面的垂直關(guān)系。然后教師引導(dǎo)學(xué)生用“平面化”的思想來思考問題:從直線與直線垂直、直線與平面平行等的定義過程得到啟發(fā),能否用一條直線垂直于一個(gè)平面內(nèi)的直線來定義這條直線與這個(gè)平面垂直呢?并組織學(xué)生交流討論,概括其定義。如果直線L與平面α內(nèi)的任意一條直線都垂直,我們就說直線L與平面α互相垂直,記作L⊥α,直線L叫做平面α的垂線,平面α叫做直線L的垂面。如圖2.3-1,直線與平面垂直時(shí),它們唯一公共點(diǎn)P叫做垂足。并對(duì)畫示表示進(jìn)行說明。Lpα圖2-3-12、老師提出問題,讓學(xué)生思考:(1)問題:雖然可以根據(jù)定義判定直線與平面垂直,但這種方法實(shí)際上難以實(shí)施。有沒有比較方便可行的方法來判斷直線和平面垂直呢?(2)師生活動(dòng):請(qǐng)同學(xué)們準(zhǔn)備一塊三角形的紙片,我們一起來做如圖2.3-2試驗(yàn):過△ABC的頂點(diǎn)A翻折紙片,得到折痕AD,將翻折后的紙片豎起放置在桌面上(BD、DC與桌面接觸),問如何翻折才能保證折痕AD與桌面所在平面垂直?ABDC圖2.3-2(3)歸納結(jié)論:引導(dǎo)學(xué)生根據(jù)直觀感知及已有經(jīng)驗(yàn)(兩條相交直線確定一個(gè)平面),進(jìn)行合情推理,獲得判定定理:一條直線與一個(gè)平面內(nèi)的兩條相交直線都垂直,則該直線與此平面垂直。老師特別強(qiáng)調(diào):a)定理中的“兩條相交直線”這一條件不可忽視;b)定理體現(xiàn)了“直線與平面垂直”與“直線與直線垂直”互相轉(zhuǎn)化的數(shù)學(xué)思想。(三)實(shí)際應(yīng)用,鞏固深化(1)課本P69例1教學(xué)(2)課本P69例2教學(xué)(四)歸納小結(jié),課后思考小結(jié):采用師生對(duì)話形式,完成下列問題:①請(qǐng)歸納一下獲得直線與平面垂直的判定定理的基本過程。②直線與平面垂直的判定定理,體現(xiàn)的教學(xué)思想方法是什么?課后作業(yè):①課本P70練習(xí)2②求證:如果一條直線平行于一個(gè)平面,那么這個(gè)平面的任何垂線都和這條直線垂直。思考題:如果一條直線垂直于平面內(nèi)的無數(shù)條直線,那么這條直線就和這個(gè)平面垂直,這個(gè)結(jié)論對(duì)嗎?為什么?§2.3.2平面與平面垂直的判定一、教學(xué)目標(biāo)1、知識(shí)與技能(1)使學(xué)生正確理解和掌握“二面角”、“二面角的平面角”及“直二面角”、“兩個(gè)平面互相垂直”的概念;(2)使學(xué)生掌握兩個(gè)平面垂直的判定定理及其簡單的應(yīng)用;(3)使學(xué)生理會(huì)“類比歸納”思想在數(shù)學(xué)問題解決上的作用。2、過程與方法(1)通過實(shí)例讓學(xué)生直觀感知“二面角”概念的形成過程;(2)類比已學(xué)知識(shí),歸納“二面角”的度量方法及兩個(gè)平面垂直的判定定理。3、情態(tài)與價(jià)值通過揭示概念的形成、發(fā)展和應(yīng)用過程,使學(xué)生理會(huì)教學(xué)存在于觀實(shí)生活周圍,從中激發(fā)學(xué)生積極思維,培養(yǎng)學(xué)生的觀察、分析、解決問題能力。二、教學(xué)重點(diǎn)、難點(diǎn)。重點(diǎn):平面與平面垂直的判定;難點(diǎn):如何度量二面角的大小。三、學(xué)法與教學(xué)用具。1、學(xué)法:實(shí)物觀察,類比歸納,語言表達(dá)。2、教學(xué)用具:二面角模型(兩塊硬紙板)四、教學(xué)設(shè)計(jì)(一)創(chuàng)設(shè)情景,揭示課題問題1:平面幾何中“角”是怎樣定義的?問題2:在立體幾何中,“異面直線所成的角”、“直線和平面所成的角”又是怎樣定義的?它們有什么共同的特征?以上問題讓學(xué)生自由發(fā)言,教師再作小結(jié),并順勢(shì)拋出問題:在生產(chǎn)實(shí)踐中,有許多問題要涉及到兩個(gè)平面相交所成的角的情形,你能舉出這個(gè)問題的一些例子嗎?如修水壩、發(fā)射人造衛(wèi)星等,而這樣的角有何特點(diǎn),該如何表示呢?下面我們共同來觀察,研探。(二)研探新知1、二面角的有關(guān)概念老師展示一張紙面,并對(duì)折讓學(xué)生觀察其狀,然后引導(dǎo)學(xué)生用數(shù)學(xué)思維思考,并對(duì)以上問題類比,歸納出二面角的概念及記法表示(如下表所示)角二面角圖形A邊頂點(diǎn)O邊BA梭lβBα定義從平面內(nèi)一點(diǎn)出發(fā)的兩條射線(半直線)所組成的圖形從空間一直線出發(fā)的兩個(gè)半平面所組成的圖形構(gòu)成射線—點(diǎn)(頂點(diǎn))一射線半平面一線(棱)一半平面表示∠AOB二面角α-l-β或α-AB-β2、二面角的度量二面角定理地反映了兩個(gè)平面相交的位置關(guān)系,如我們常說“把門開大一些”,是指二面角大一些,那我們應(yīng)如何度量二兩角的大小呢?師生活動(dòng):師生共同做一個(gè)小實(shí)驗(yàn)(預(yù)先準(zhǔn)備好的二面角的模型)在其棱上位取一點(diǎn)為頂點(diǎn),在兩個(gè)半平面內(nèi)各作一射線(如圖2.3-3),通過實(shí)驗(yàn)操作,研探二面角大小的度量方法——二面角的平面角。教師特別指出:(1)在表示二面角的平面角時(shí),要求“OA⊥L”,OB⊥L;(2)∠AOB的大小與點(diǎn)O在L上位置無關(guān);(3)當(dāng)二面角的平面角是直角時(shí),這兩個(gè)平面的位置關(guān)系怎樣?承上啟下,引導(dǎo)學(xué)生觀察,類比、自主探究,βB獲得兩個(gè)平面互相垂直的判定定理:一個(gè)平面過另一個(gè)平面的垂線,則這兩個(gè)平面垂直。COA(三)應(yīng)用舉例,強(qiáng)化所學(xué)α例題:課本P.72例3圖2.3-3做法:教師引導(dǎo)學(xué)生分析題意,先讓學(xué)生自己動(dòng)手推理證明,然后抽檢學(xué)生掌握情況,教師最后講評(píng)并板書證明過程。(四)運(yùn)用反饋,深化鞏固問題:課本P.73的探究問題做法:學(xué)生思考(或分組討論),老師與學(xué)生對(duì)話完成。(五)小結(jié)歸納,整體認(rèn)識(shí)(1)二面角以及平面角的有關(guān)概念;(2)兩個(gè)平面垂直的判定定理的內(nèi)容,它與直線與平面垂直的判定定理有何關(guān)系?(六)課后鞏固,拓展思維1、課后作業(yè):自二面角內(nèi)一點(diǎn)分別向兩個(gè)面引垂線,求證:它們所成的角與二兩角的平面角互補(bǔ)。2、課后思考問題:在表示二面角的平面角時(shí),為何要求“OA⊥L、OB⊥L”?為什么∠AOB的大小與點(diǎn)O在L上的位置無關(guān)?§2、3.3直線與平面垂直的性質(zhì)§2、3.4平面與平面垂直的性質(zhì)一、教學(xué)目標(biāo)1、知識(shí)與技能(1)使學(xué)生掌握直線與平面垂直,平面與平面垂直的性質(zhì)定理;(2)能運(yùn)用性質(zhì)定理解決一些簡單問題;(3)了解直線與平面、平面與平面垂直的判定定理和性質(zhì)定理間的相互聯(lián)系。2、過程與方法(1)讓學(xué)生在觀察物體模型的基礎(chǔ)上,進(jìn)行操作確認(rèn),獲得對(duì)性質(zhì)定理正確性的認(rèn)識(shí);(2)性質(zhì)定理的推理論證。3、情態(tài)與價(jià)值通過“直觀感知、操作確認(rèn),推理證明”,培養(yǎng)學(xué)生空間概念、空間想象能力以及邏輯推理能力。二、教學(xué)重點(diǎn)、難點(diǎn)兩個(gè)性質(zhì)定理的證明。三、學(xué)法與用具(1)學(xué)法:直觀感知、操作確認(rèn),猜想與證明。(2)用具:長方體模型。四、教學(xué)設(shè)計(jì)(一)創(chuàng)設(shè)情景,揭示課題問題:若一條直線與一個(gè)平面垂直,則可得到什么結(jié)論?若兩條直線與同一個(gè)平面垂直呢?讓學(xué)生自由發(fā)言,教師不急于下結(jié)論,而是繼續(xù)引導(dǎo)學(xué)生:欲知結(jié)論怎樣,讓我們一起來觀察、研探。(自然進(jìn)入課題內(nèi)容)(二)研探新知1、操作確認(rèn)觀察長方體模型中四條側(cè)棱與同一個(gè)底面的位置關(guān)系。如圖2.3—4,在長方體ABCD—A1B1C1D1中,棱AA1、BB1、CC1、DD1所在直線都垂直于平面ABCD,它們之間是有什么位置關(guān)系?(顯然互相平行)然后進(jìn)一步遷移活動(dòng):已知直線a⊥α、b⊥α、那么直線a、b一定平行嗎?(一定)我們能否證明這一事實(shí)的正確性呢?C1D1C1D1abA1A1B1αDαDCCABAB圖2.3-4圖2.3-52、推理證明引導(dǎo)學(xué)生分析性質(zhì)定理成立的條件,介紹證明性質(zhì)定理成立的特殊方法——反證法,然后師生互動(dòng)共同完成該推理過程,最后歸納得出:垂直于同一個(gè)平面的兩條直線平行。(三)應(yīng)用鞏固例子:課本P.74例4做法:教師給出問題,學(xué)生思考探究、判斷并說理由,教師最后評(píng)議。(四)類比拓展,研探新知類比上面定理:若在兩個(gè)平面互相垂直的條件下,又會(huì)得出怎樣的結(jié)論呢?例如:如何在黑板面上畫一條與地面垂直的直線?引導(dǎo)學(xué)生觀察教室相鄰兩面墻的交線,容易發(fā)現(xiàn)該交線與地面垂直,這時(shí),只要在黑板上畫出一條與這交線平行的直線,則所畫直線必與地面垂直。然后師生互動(dòng),共同完成性質(zhì)定理的確認(rèn)與證明,并歸納性質(zhì)定理:兩個(gè)平面垂直,則一個(gè)平面內(nèi)垂直于交線的直線與另一個(gè)平面垂直。(五)鞏固深化、發(fā)展思維思考1、設(shè)平面α⊥平面β,點(diǎn)P在平面α內(nèi),過點(diǎn)P作平面β的垂線a,直線a與平面α具有什么位置關(guān)系?(答:直線a必在平面α內(nèi))思考2、已知平面α、β和直線a,若α⊥β,a⊥β,aα,則直線a與平面α具有什么位置關(guān)系?(六)歸納小結(jié),課后鞏固小結(jié):(1)請(qǐng)歸納一下本節(jié)學(xué)習(xí)了什么性質(zhì)定理,其內(nèi)容各是什么?(2)類比兩個(gè)性質(zhì)定理,你發(fā)現(xiàn)它們之間有何聯(lián)系?作業(yè):(1)求證:兩條異面直線不能同時(shí)和一個(gè)平面垂直;(2)求證:三個(gè)兩兩垂直的平面的交線兩兩垂直。本章小結(jié)一、教學(xué)目標(biāo)1、知識(shí)與技能(1)使學(xué)生掌握知識(shí)結(jié)構(gòu)與聯(lián)系,進(jìn)一步鞏固、深化所學(xué)知識(shí);(2)通過對(duì)知識(shí)的梳理,提高學(xué)生的歸納知識(shí)和綜合運(yùn)用知識(shí)的能力。2、過程與方法利用框圖對(duì)本章知識(shí)進(jìn)行系統(tǒng)的小結(jié),直觀、簡明再現(xiàn)所學(xué)知識(shí),化抽象學(xué)習(xí)為直觀學(xué)習(xí),易于識(shí)記;同時(shí)凸現(xiàn)數(shù)學(xué)知識(shí)的發(fā)展和聯(lián)系。3情態(tài)與價(jià)值學(xué)生通過知識(shí)的整合、梳理,理會(huì)空間點(diǎn)、線面間的位置關(guān)系及其互相聯(lián)系,進(jìn)一步培養(yǎng)學(xué)生的空間想象能力和解決問題能力。二、教學(xué)重點(diǎn)、難點(diǎn)重點(diǎn):各知識(shí)點(diǎn)間的網(wǎng)絡(luò)關(guān)系;難點(diǎn):在空間如何實(shí)現(xiàn)平行關(guān)系、垂直關(guān)系、垂直與平行關(guān)系之間的轉(zhuǎn)化。三、教學(xué)設(shè)計(jì)(一)知識(shí)回顧,整體認(rèn)識(shí)1、本章知識(shí)回顧(1)空間點(diǎn)、線、面間的位置關(guān)系;(2)直線、平面平行的判定及性質(zhì);(3)直線、平面垂直的判定及性質(zhì)。2、本章知識(shí)結(jié)構(gòu)框圖平面(公理1、公理2、公理3、公理4)平面(公理1、公理2、公理3、公理4)空間直線、平面的位置關(guān)系空間直線、平面的位置關(guān)系平面與平面的位置關(guān)系直線與平面的位置關(guān)系直線與直線的位置關(guān)系平面與平面的位置關(guān)系直線與平面的位置關(guān)系直線與直線的位置關(guān)系 (二)整合知識(shí),發(fā)展思維1、刻畫平面的三個(gè)公理是立體幾何公理體系的基石,是研究空間圖形問題,進(jìn)行邏輯推理的基礎(chǔ)。公理1——判定直線是否在平面內(nèi)的依據(jù);公理2——提供確定平面最基本的依據(jù);公理3——判定兩個(gè)平面交線位置的依據(jù);公理4——判定空間直線之間平行的依據(jù)。2、空間問題解決的重要思想方法:化空間問題為平面問題;3、空間平行、垂直之間的轉(zhuǎn)化與聯(lián)系:平面與平面平行直線與直線平行直線與平面平行平面與平面平行直線與直線平行直線與平面平行平面與平面垂直直線與直線垂直直線與平面垂直平面與平面垂直直線與直線垂直直線與平面垂直4、觀察和推理是認(rèn)識(shí)世界的兩種重要手段,兩者相輔相成,缺一不可。(三)應(yīng)用舉例,深化鞏固1、P.82A組第1題本題主要是公理1、2知識(shí)的鞏固與應(yīng)用。2、P.82A組第8題本題主要是直線與平面垂直的判定與性質(zhì)的知識(shí)鞏固與應(yīng)用。(四)課后作業(yè)1、閱讀本章知識(shí)內(nèi)容,從中體會(huì)知識(shí)的發(fā)展過程,理會(huì)問題解決的思想方法;2、P.83B組第2題。第三章直線與方程3.1.1直線的傾斜角和斜率教學(xué)目標(biāo):知識(shí)與技能正確理解直線的傾斜角和斜率的概念.理解直線的傾斜角的唯一性.理解直線的斜率的存在性.斜率公式的推導(dǎo)過程,掌握過兩點(diǎn)的直線的斜率公式.情感態(tài)度與價(jià)值觀(1)通過直線的傾斜角概念的引入學(xué)習(xí)和直線傾斜角與斜率關(guān)系的揭示,培養(yǎng)學(xué)生觀察、探索能力,運(yùn)用數(shù)學(xué)語言表達(dá)能力,數(shù)學(xué)交流與評(píng)價(jià)能力.(2)通過斜率概念的建立和斜率公式的推導(dǎo),幫助學(xué)生進(jìn)一步理解數(shù)形結(jié)合思想,培養(yǎng)學(xué)生樹立辯證統(tǒng)一的觀點(diǎn),培養(yǎng)學(xué)生形成嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度和求簡的數(shù)學(xué)精神.重點(diǎn)與難點(diǎn):直線的傾斜角、斜率的概念和公式.教學(xué)用具:計(jì)算機(jī)教學(xué)方法:啟發(fā)、引導(dǎo)、討論.教學(xué)過程:直線的傾斜角的概念我們知道,經(jīng)過兩點(diǎn)有且只有(確定)一條直線.那么,經(jīng)過一點(diǎn)P的直線l的位置能確定嗎?如圖,過一點(diǎn)P可以作無數(shù)多條直線a,b,c,…易見,答案是否定的.這些直線有什么聯(lián)系呢?(1)它們都經(jīng)過點(diǎn)P.(2)它們的‘傾斜程度’不同.怎樣描述這種‘傾斜程度’的不同?引入直線的傾斜角的概念:當(dāng)直線l與x軸相交時(shí),取x軸作為基準(zhǔn),x軸正向與直線l向上方向之間所成的角α叫做直線l的傾斜角.特別地,當(dāng)直線l與x軸平行或重合時(shí),規(guī)定α=0°.問:傾斜角α的取值范圍是什么?0°≤α<180°.當(dāng)直線l與x軸垂直時(shí),α=90°.因?yàn)槠矫嬷苯亲鴺?biāo)系內(nèi)的每一條直線都有確定的傾斜程度,引入直線的傾斜角之后,我們就可以用傾斜角α來表示平面直角坐標(biāo)系內(nèi)的每一條直線的傾斜程度.如圖,直線a∥b∥c,那么它們的傾斜角α相等嗎?答案是肯定的.所以一個(gè)傾斜角α不能確定一條直線.確定平面直角坐標(biāo)系內(nèi)的一條直線位置的幾何要素:一個(gè)點(diǎn)P和一個(gè)傾斜角α.(二)直線的斜率:一條直線的傾斜角α(α≠90°)的正切值叫做這條直線的斜率,斜率常用小寫字母k表示,也就是k=tanα⑴當(dāng)直線l與x軸平行或重合時(shí),α=0°,k=tan0°=0;⑵當(dāng)直線l與x軸垂直時(shí),α=90°,k不存在.由此可知,一條直線l的傾斜角α一定存在,但是斜率k不一定存在.例如,α=45°時(shí),k=tan45°=1;α=135°時(shí),k=tan135°=tan(180°-45°)=-tan45°=-1.學(xué)習(xí)了斜率之后,我們又可以用斜率來表示直線的傾斜程度.(三)直線的斜率公式:給定兩點(diǎn)P1(x1,y1),P2(x2,y2),x1≠x2,如何用兩點(diǎn)的坐標(biāo)來表示直線P1P2的斜率?可用計(jì)算機(jī)作動(dòng)畫演示:直線P1P2的四種情況,并引導(dǎo)學(xué)生如何作輔助線,共同完成斜率公式的推導(dǎo).(略)斜率公式:對(duì)于上面的斜率公式要注意下面四點(diǎn):(1)當(dāng)x1=x2時(shí),公式右邊無意義,直線的斜率不存在,傾斜角α=90°,直線與x軸垂直;(2)k與P1、P2的順序無關(guān),即y1,y2和x1,x2在公式中的前后次序可以同時(shí)交換,但分子與分母不能交換;(3)斜率k可以不通過傾斜角而直接由直線上兩點(diǎn)的坐標(biāo)求得;(4)當(dāng)y1=y2時(shí),斜率k=0,直線的傾斜角α=0°,直線與x軸平行或重合.(5)求直線的傾斜角可以由直線上兩點(diǎn)的坐標(biāo)先求斜率而得到.(四)例題:例1已知A(3,2),B(-4,1),C(0,-1),求直線AB,BC,CA的斜率,并判斷它們的傾斜角是鈍角還是銳角.(用計(jì)算機(jī)作直線,圖略)分析:已知兩點(diǎn)坐標(biāo),而且x1≠x2,由斜率公式代入即可求得k的值;而當(dāng)k=tanα<0時(shí),傾斜角α是鈍角;而當(dāng)k=tanα>0時(shí),傾斜角α是銳角;而當(dāng)k=tanα=0時(shí),傾斜角α是0°.略解:直線AB的斜率k1=1/7>0,所以它的傾斜角α是銳角;直線BC的斜率k2=-0.5<0,所以它的傾斜角α是鈍角;直線CA的斜率k3=1>0,所以它的傾斜角α是銳角.例2在平面直角坐標(biāo)系中,畫出經(jīng)過原點(diǎn)且斜率分別為1,-1,2,及-3的直線a,b,c,l.分析:要畫出經(jīng)過原點(diǎn)的直線a,只要再找出a上的另外一點(diǎn)M.而M的坐標(biāo)可以根據(jù)直線a的斜率確定;或者k=tanα=1是特殊值,所以也可以以原點(diǎn)為角的頂點(diǎn),x軸的正半軸為角的一邊,在x軸的上方作45°的角,再把所作的這一邊反向延長成直線即可.略解:設(shè)直線a上的另外一點(diǎn)M的坐標(biāo)為(x,y),根據(jù)斜率公式有1=(y-0)/(x-0)所以x=y可令x=1,則y=1,于是點(diǎn)M的坐標(biāo)為(1,1).此時(shí)過原點(diǎn)和點(diǎn)M(1,1),可作直線a.同理,可作直線b,c,l.(用計(jì)算機(jī)作動(dòng)畫演示畫直線過程)(五)練習(xí):P911.2.3.4.(六)小結(jié):(1)直線的傾斜角和斜率的概念.(2)直線的斜率公式.(七)課后作業(yè):P94習(xí)題3.11.3.(八)板書設(shè)計(jì):§§3.1.1……1.直線傾斜角的概念3.例1……練習(xí)1練習(xí)32.直線的斜率4.例2……練習(xí)2練習(xí)43.1.2兩條直線的平行與垂直()教學(xué)目標(biāo)(一)知識(shí)教學(xué)理解并掌握兩條直線平行與垂直的條件,會(huì)運(yùn)用條件判定兩直線是否平行或垂直.(二)能力訓(xùn)練通過探究兩直線平行或垂直的條件,培養(yǎng)學(xué)生運(yùn)用已有知識(shí)解決新問題的能力,以及數(shù)形結(jié)合能力.(三)學(xué)科滲透通過對(duì)兩直線平行與垂直的位置關(guān)系的研究,培養(yǎng)學(xué)生的成功意識(shí),合作交流的學(xué)習(xí)方式,激發(fā)學(xué)生的學(xué)習(xí)興趣.重點(diǎn):兩條直線平行和垂直的條件是重點(diǎn),要求學(xué)生能熟練掌握,并靈活運(yùn)用.難點(diǎn):啟發(fā)學(xué)生,把研究兩條直線的平行或垂直問題,轉(zhuǎn)化為研究兩條直線的斜率的關(guān)系問題.注意:對(duì)于兩條直線中有一條直線斜率不存在的情況,在課堂上老師應(yīng)提醒學(xué)生注意解決好這個(gè)問題.教學(xué)過程(一)先研究特殊情況下的兩條直線平行與垂直上一節(jié)課,我們已經(jīng)學(xué)習(xí)了直線的傾斜角和斜率的概念,而且知道,可以用傾斜角和斜率來表示直線相對(duì)于x軸的傾斜程度,并推導(dǎo)出了斜率的坐標(biāo)計(jì)算公式.現(xiàn)在,我們來研究能否通過兩條直線的斜率來判斷兩條直線的平行或垂直.討論:兩條直線中有一條直線沒有斜率,(1)當(dāng)另一條直線的斜率也不存在時(shí),兩直線的傾斜角都為90°,它們互相平行;(2)當(dāng)另一條直線的斜率為0時(shí),一條直線的傾斜角為90°,另一條直線的傾斜角為0°,兩直線互相垂直.(二)兩條直線的斜率都存在時(shí),兩直線的平行與垂直設(shè)直線L1和L2的斜率分別為k1和k2.我們知道,兩條直線的平行或垂直是由兩條直線的方向決定的,而兩條直線的方向又是由直線的傾斜角或斜率決定的.所以我們下面要研究的問題是:兩條互相平行或垂直的直線,它們的斜率有什么關(guān)系?首先研究兩條直線互相平行(不重合)的情形.如果L1∥L2(圖1-29),那么它們的傾斜角相等:α1=α2.(借助計(jì)算機(jī),讓學(xué)生通過度量,感知α1,α2的關(guān)系)∴tgα1=tgα2.即k1=k2.反過來,如果兩條直線的斜率相等:即k1=k2,那么tgα1=tgα2.由于0°≤α1<180°,0°≤α<180°,∴α1=α2.又∵兩條直線不重合,∴L1∥L2.結(jié)論:兩條直線都有斜率而且不重合,如果它們平行,那么它們的斜率相等;反之,如果它們的斜率相等,那么它們平行,即注意:上面的等價(jià)是在兩條直線不重合且斜率存在的前提下才成立的,缺少這個(gè)前提,結(jié)論并不成立.即如果k1=k2,那么一定有L1∥L2;反之則不一定.下面我們研究兩條直線垂直的情形.如果L1⊥L2,這時(shí)α1≠α2,否則兩直線平行.設(shè)α2<α1(圖1-30),甲圖的特征是L1與L2的交點(diǎn)在x軸上方;乙圖的特征是L1與L2的交點(diǎn)在x軸下方;丙圖的特征是L1與L2的交點(diǎn)在x軸上,無論哪種情況下都有α1=90°+α2.因?yàn)長1、L2的斜率分別是k1、k2,即α1≠90°,所以α2≠0°.,可以推出:α1=90°+α2.L1⊥L2.結(jié)論:兩條直線都有斜率,如果它們互相垂直,那么它們的斜率互為負(fù)倒數(shù);反之,如果它們的斜率互為負(fù)倒數(shù),那么它們互相垂直,即注意:結(jié)論成立的條件.即如果k1·k2=-1,那么一定有L1⊥L2;反之則不一定.(借助計(jì)算機(jī),讓學(xué)生通過度量,感知k1,k2的關(guān)系,并使L1(或L2)轉(zhuǎn)動(dòng)起來,但仍保持L1⊥L2,觀察k1,k2的關(guān)系,得到猜想,再加以驗(yàn)證.轉(zhuǎn)動(dòng)時(shí),可使α1為銳角,鈍角等).例題例1已知A(2,3),B(-4,0),P(-3,1),Q(-1,2),試判斷直線BA與PQ的位置關(guān)系,并證明你的結(jié)論.分析:借助計(jì)算機(jī)作圖,通過觀察猜想:BA∥PQ,再通過計(jì)算加以驗(yàn)證.(圖略)解:直線BA的斜率k1=(3-0)/(2-(-4))=0.5,直線PQ的斜率k2=(2-1)/(-1-(-3))=0.5,因?yàn)閗1=k2=0.5,所以直線BA∥PQ.例2已知四邊形ABCD的四個(gè)頂點(diǎn)分別為A(0,0),B(2,-1),C(4,2),D(2,3),試判斷四邊形ABCD的形狀,并給出證明.(借助計(jì)算機(jī)作圖,通過觀察猜想:四邊形ABCD是平行四邊形,再通過計(jì)算加以驗(yàn)證)解同上.已知A(-6,0),B(3,6),P(0,3),Q(-2,6),試判斷直線AB與PQ的位置關(guān)系.解:直線AB的斜率k1=(6-0)/(3-(-6))=2/3,直線PQ的斜率k2=(6-3)(-2-0)=-3/2,因?yàn)閗1·k2=-1所以AB⊥PQ.例4已知A(5,-1),B(1,1),C(2,3),試判斷三角形ABC的形狀.分析:借助計(jì)算機(jī)作圖,通過觀察猜想:三角形ABC是直角三角形,其中AB⊥BC,再通過計(jì)算加以驗(yàn)證.(圖略)課堂練習(xí)P94練習(xí)1.2.課后小結(jié)(1)兩條直線平行或垂直的真實(shí)等價(jià)條件;(2)應(yīng)用條件,判定兩條直線平行或垂直.(3)應(yīng)用直線平行的條件,判定三點(diǎn)共線.布置作業(yè)P94習(xí)題3.15.8.板書設(shè)計(jì)3.2.1直線的點(diǎn)斜式方程一、教學(xué)目標(biāo)1、知識(shí)與技能(1)理解直線方程的點(diǎn)斜式、斜截式的形式特點(diǎn)和適用范圍;(2)能正確利用直線的點(diǎn)斜式、斜截式公式求直線方程。(3)體會(huì)直線的斜截式方程與一次函數(shù)的關(guān)系.2、過程與方法在已知直角坐標(biāo)系內(nèi)確定一條直線的幾何要素——直線上的一點(diǎn)和直線的傾斜角的基礎(chǔ)上,通過師生探討,得出直線的點(diǎn)斜式方程;學(xué)生通過對(duì)比理解“截距”與“距離”的區(qū)別。3、情態(tài)與價(jià)值觀通過讓學(xué)生體會(huì)直線的斜截式方程與一次函數(shù)的關(guān)系,進(jìn)一步培養(yǎng)學(xué)生數(shù)形結(jié)合的思想,滲透數(shù)學(xué)中普遍存在相互聯(lián)系、相互轉(zhuǎn)化等觀點(diǎn),使學(xué)生能用聯(lián)系的觀點(diǎn)看問題。二、教學(xué)重點(diǎn)、難點(diǎn):(1)重點(diǎn):直線的點(diǎn)斜式方程和斜截式方程。(2)難點(diǎn):直線的點(diǎn)斜式方程和斜截式方程的應(yīng)用。三、教學(xué)設(shè)想問題設(shè)計(jì)意圖師生活動(dòng)1、在直線坐標(biāo)系內(nèi)確定一條直線,應(yīng)知道哪些條件?使學(xué)生在已有知識(shí)和經(jīng)驗(yàn)的基礎(chǔ)上,探索新知。學(xué)生回顧,并回答。然后教師指出,直線的方程,就是直線上任意一點(diǎn)的坐標(biāo)滿足的關(guān)系式。2、直線經(jīng)過點(diǎn),且斜率為。設(shè)點(diǎn)是直線上的任意一點(diǎn),請(qǐng)建立與之間的關(guān)系。培養(yǎng)學(xué)生自主探索的能力,并體會(huì)直線的方程,就是直線上任意一點(diǎn)的坐標(biāo)滿足的關(guān)系式,從而掌握根據(jù)條件求直線方程的方法。學(xué)生根據(jù)斜率公式,可以得到,當(dāng)時(shí),,即(1)教師對(duì)基礎(chǔ)薄弱的學(xué)生給予關(guān)注、引導(dǎo),使每個(gè)學(xué)生都能推導(dǎo)出這個(gè)方程。3、(1)過點(diǎn),斜率是的直線上的點(diǎn),其坐標(biāo)都滿足方程(1)嗎?使學(xué)生了解方程為直線方程必須滿兩個(gè)條件。學(xué)生驗(yàn)證,教師引導(dǎo)。問題設(shè)計(jì)意圖師生活動(dòng)(2)坐標(biāo)滿足方程(1)的點(diǎn)都在經(jīng)過,斜率為的直線上嗎?使學(xué)生了解方程為直線方程必須滿兩個(gè)條件。學(xué)生驗(yàn)證,教師引導(dǎo)。然后教師指出方程(1)由直線上一定點(diǎn)及其斜率確定,所以叫做直線的點(diǎn)斜式方程,簡稱點(diǎn)斜式(pointslopeform).4、直線的點(diǎn)斜式方程能否表示坐標(biāo)平面上的所有直線呢?使學(xué)生理解直線的點(diǎn)斜式方程的適用范圍。學(xué)生分組互相討論,然后說明理由。5、(1)軸所在直線的方程是什么?軸所在直線的方程是什么?(2)經(jīng)過點(diǎn)且平行于軸(即垂直于軸)的直線方程是什么?(3)經(jīng)過點(diǎn)且平行于軸(即垂直于軸)的直線方程是什么?進(jìn)一步使學(xué)生理解直線的點(diǎn)斜式方程的適用范圍,掌握特殊直線方程的表示形式。教師學(xué)生引導(dǎo)通過畫圖分析,求得問題的解決。6、例1的教學(xué)。學(xué)會(huì)運(yùn)用點(diǎn)斜式方程解決問題,清楚用點(diǎn)斜式公式求直線方程必須具備的兩個(gè)條件:(1)一個(gè)定點(diǎn);(2)有斜率。同時(shí)掌握已知直線方程畫直線的方法。教師引導(dǎo)學(xué)生分析要用點(diǎn)斜式求直線方程應(yīng)已知那些條件?題目那些條件已經(jīng)直接給予,那些條件還有待已去求。在坐標(biāo)平面內(nèi),要畫一條直線可以怎樣去畫。7、已知直線的斜率為,且與軸的交點(diǎn)為,求直線的方程。引入斜截式方程,讓學(xué)生懂得斜截式方程源于點(diǎn)斜式方程,是點(diǎn)斜式方程的一種特殊情形。學(xué)生獨(dú)立求出直線的方程:(2)再此基礎(chǔ)上,教師給出截距的概念,引導(dǎo)學(xué)生分析方程(2)由哪兩個(gè)條件確定,讓學(xué)生理解斜截式方程概念的內(nèi)涵。8、觀察方程,它的形式具有什么特點(diǎn)?深入理解和掌握斜截式方程的特點(diǎn)?學(xué)生討論,教師及時(shí)給予評(píng)價(jià)。問題設(shè)計(jì)意圖師生活動(dòng)9、直線在軸上的截距是什么?使學(xué)生理解“截距”與“距離”兩個(gè)概念的區(qū)別。學(xué)生思考回答,教師評(píng)價(jià)。10、你如何從直線方程的角度認(rèn)識(shí)一次函數(shù)?一次函數(shù)中和的幾何意義是什么?你能說出一次函數(shù)圖象的特點(diǎn)嗎?體會(huì)直線的斜截式方程與一次函數(shù)的關(guān)系.學(xué)生思考、討論,教師評(píng)價(jià)、歸納概括。11、例2的教學(xué)。掌握從直線方程的角度判斷兩條直線相互平行,或相互垂直;進(jìn)一步理解斜截式方程中的幾何意義。教師引導(dǎo)學(xué)生分析:用斜率判斷兩條直線平行、垂直結(jié)論。思考(1)時(shí),有何關(guān)系?(2)時(shí),有何關(guān)系?在此由學(xué)生得出結(jié)論:且;12、課堂練習(xí)第100頁練習(xí)第1,2,3,4題。鞏固本節(jié)課所學(xué)過的知識(shí)。學(xué)生獨(dú)立完成,教師檢查反饋。13、小結(jié)使學(xué)生對(duì)本節(jié)課所學(xué)的知識(shí)有一個(gè)整體性的認(rèn)識(shí),了解知識(shí)的來龍去脈。教師引導(dǎo)學(xué)生概括:(1)本節(jié)課我們學(xué)過那些知識(shí)點(diǎn);(2)直線方程的點(diǎn)斜式、斜截式的形式特點(diǎn)和適用范圍是什么?(3)求一條直線的方程,要知道多少個(gè)條件?14、布置作業(yè):第106頁第1題的(1)、(2)、(3)和第3、5題鞏固深化學(xué)生課后獨(dú)立完成。3.2.2直線的兩點(diǎn)式方程一、教學(xué)目標(biāo)1、知識(shí)與技能(1)掌握直線方程的兩點(diǎn)的形式特點(diǎn)及適用范圍;(2)了解直線方程截距式的形式特點(diǎn)及適用范圍。2、過程與方法讓學(xué)生在應(yīng)用舊知識(shí)的探究過程中獲得到新的結(jié)論,并通過新舊知識(shí)的比較、分析、應(yīng)用獲得新知識(shí)的特點(diǎn)。3、情態(tài)與價(jià)值觀(1)認(rèn)識(shí)事物之間的普遍聯(lián)系與相互轉(zhuǎn)化;(2)培養(yǎng)學(xué)生用聯(lián)系的觀點(diǎn)看問題。二、教學(xué)重點(diǎn)、難點(diǎn):重點(diǎn):直線方程兩點(diǎn)式。2、難點(diǎn):兩點(diǎn)式推導(dǎo)過程的理解。三、教學(xué)設(shè)想問題設(shè)計(jì)意圖師生活動(dòng)1、利用點(diǎn)斜式解答如下問題:(1)已知直線經(jīng)過兩點(diǎn),求直線的方程.(2)已知兩點(diǎn)其中,求通過這兩點(diǎn)的直線方程。遵循由淺及深,由特殊到一般的認(rèn)知規(guī)律。使學(xué)生在已有的知識(shí)基礎(chǔ)上獲得新結(jié)論,達(dá)到溫故知新的目的。教師引導(dǎo)學(xué)生:根據(jù)已有的知識(shí),要求直線方程,應(yīng)知道什么條件?能不能把問題轉(zhuǎn)化為已經(jīng)解決的問題呢?在此基礎(chǔ)上,學(xué)生根據(jù)已知兩點(diǎn)的坐標(biāo),先判斷是否存在斜率,然后求出直線的斜率,從而可求出直線方程:(1)(2)教師指出:當(dāng)時(shí),方程可以寫成由于這個(gè)直線方程由兩點(diǎn)確定,所以我們把它叫直線的兩點(diǎn)式方程,簡稱兩點(diǎn)式(two-pointform).2、若點(diǎn)中有,或,此時(shí)這兩點(diǎn)的直線方程是什么?使學(xué)生懂得兩點(diǎn)式的適用范圍和當(dāng)已知的兩點(diǎn)不滿足兩點(diǎn)式的條件時(shí)它的方程形式。教師引導(dǎo)學(xué)生通過畫圖、觀察和分析,發(fā)現(xiàn)當(dāng)時(shí),直線與軸垂直,所以直線方程為:;當(dāng)時(shí),直線與軸垂直,直線方程為:。問題設(shè)計(jì)意圖師生活動(dòng)3、例3教學(xué)已知直線與軸的交點(diǎn)為A,與軸的交點(diǎn)為B,其中,求直線的方程。使學(xué)生學(xué)會(huì)用兩點(diǎn)式求直線方程;理解截距式源于兩點(diǎn)式,是兩點(diǎn)式的特殊情形。教師引導(dǎo)學(xué)生分析題目中所給的條件有什么特點(diǎn)?可以用多少方法來求直線的方程?那種方法更為簡捷?然后由求出直線方程:教師指出:的幾何意義和截距式方程的概念。4、例4教學(xué)已知三角形的三個(gè)頂點(diǎn)A(-5,0),B(3,-3),C(0,2),求BC邊所在直線的方程,以及該邊上中線所在直線的方程。讓學(xué)生學(xué)會(huì)根據(jù)題目中所給的條件,選擇恰當(dāng)?shù)闹本€方程解決問題。教師給出中點(diǎn)坐標(biāo)公式,學(xué)生根據(jù)自己的理解,選擇恰當(dāng)方法求出邊BC所在的直線方程和該邊上中線所在直線方程。在此基礎(chǔ)上,學(xué)生交流各自的作法,并進(jìn)行比較。5、課堂練習(xí)第102頁第1、2、3題。學(xué)生獨(dú)立完成,教師檢查、反饋。6、小結(jié)增強(qiáng)學(xué)生對(duì)直線方種四種形式(點(diǎn)斜式、斜截式、兩點(diǎn)式、截距式)互相之間的聯(lián)系的理解。教師提出:(1)到目前為止,我們所學(xué)過的直線方程的表達(dá)形式有多少種?它們之間有什么關(guān)系?(2)要求一條直線的方程,必須知道多少個(gè)條件?7、布置作業(yè)鞏固深化,培養(yǎng)學(xué)生的獨(dú)立解決問題的能力。學(xué)生課后完成3.2.3直線的一般式方程一、教學(xué)目標(biāo)1、知識(shí)與技能(1)明確直線方程一般式的形式特征;(2)會(huì)把直線方程的一般式化為斜截式,進(jìn)而求斜率和截距;(3)會(huì)把直線方程的點(diǎn)斜式、兩點(diǎn)式化為一般式。2、過程與方法學(xué)會(huì)用分類討論的思想方法解決問題。3、情態(tài)與價(jià)值觀(1)認(rèn)識(shí)事物之間的普遍聯(lián)系與相互轉(zhuǎn)化;(2)用聯(lián)系的觀點(diǎn)看問題。二、教學(xué)重點(diǎn)、難點(diǎn):1、重點(diǎn):直線方程的一般式。2、難點(diǎn):對(duì)直線方程一般式的理解與應(yīng)用。三、教學(xué)設(shè)想問題設(shè)計(jì)意圖師生活動(dòng)1、(1)平面直角坐標(biāo)系中的每一條直線都可以用一個(gè)關(guān)于的二元一次方程表示嗎?(2)每一個(gè)關(guān)于的二元一次方程(A,B不同時(shí)為0)都表示一條直線嗎?使學(xué)生理解直線和二元一次方程的關(guān)系。教師引導(dǎo)學(xué)生用分類討論的方法思考探究問題(1),即直線存在斜率和直線不存在斜率時(shí)求出的直線方程是否都為二元一次方程。對(duì)于問題(2),教師引導(dǎo)學(xué)生理解要判斷某一個(gè)方程是否表示一條直線,只需看這個(gè)方程是否可以轉(zhuǎn)化為直線方程的某種形式。為此要對(duì)B分類討論,即當(dāng)時(shí)和當(dāng)B=0時(shí)兩種情形進(jìn)行變形。然后由學(xué)生去變形判斷,得出結(jié)論:關(guān)于的二元一次方程,它都表示一條直線。教師概括指出:由于任何一條直線都可以用一個(gè)關(guān)于的二元一次方程表示;同時(shí),任何一個(gè)關(guān)于的二元一次方程都表示一條直線。我們把關(guān)于關(guān)于的二元一次方程(A,B不同時(shí)為0)叫做直線的一般式方程,簡稱一般式(generalform).2、直線方程的一般式與其他幾種形式的直線方程相比,它有什么優(yōu)點(diǎn)?使學(xué)生理解直線方程的一般式的與其他形學(xué)生通過對(duì)比、討論,發(fā)現(xiàn)直線方程的一般式與其他形式的直線方程的一個(gè)不同點(diǎn)是:問題設(shè)計(jì)意圖師生活動(dòng)式的不同點(diǎn)。直線的一般式方程能夠表示平面上的所有直線,而點(diǎn)斜式、斜截式、兩點(diǎn)式方程,都不能表示與軸垂直的直線。3、在方程中,A,B,C為何值時(shí),方程表示的直線(1)平行于軸;(2)平行于軸;(3)與軸重合;(4)與重合。使學(xué)生理解二元一次方程的系數(shù)和常數(shù)項(xiàng)對(duì)直線的位置的影響。教師引導(dǎo)學(xué)生回顧前面所學(xué)過的與軸平行和重合、與軸平行和重合的直線方程的形式。然后由學(xué)生自主探索得到問題的答案。4、例5的教學(xué)已知直線經(jīng)過點(diǎn)A(6,-4),斜率為,求直線的點(diǎn)斜式和一般式方程。使學(xué)生體會(huì)把直線方程的點(diǎn)斜式轉(zhuǎn)化為一般式,把握直線方程一般式的特點(diǎn)。學(xué)生獨(dú)立完成。然后教師檢查、評(píng)價(jià)、反饋。指出:對(duì)于直線方程的一般式,一般作如下約定:一般按含項(xiàng)、含項(xiàng)、常數(shù)項(xiàng)順序排列;項(xiàng)的系數(shù)為正;,的系數(shù)和常數(shù)項(xiàng)一般不出現(xiàn)分?jǐn)?shù);無特加要時(shí),求直線方程的結(jié)果寫成一般式。5、例6的教學(xué)把直線的一般式方程化成斜截式,求出直線的斜率以及它在軸與軸上的截距,并畫出圖形。使學(xué)生體會(huì)直線方程的一般式化為斜截式,和已知直線方程的一般式求直線的斜率和截距的方法。先由學(xué)生思考解答,并讓一個(gè)學(xué)生上黑板板書。然后教師引導(dǎo)學(xué)生歸納出由直線方程的一般式,求直線的斜率和截距的方法:把一般式轉(zhuǎn)化為斜截式可求出直線的斜率的和直線在軸上的截距。求直線與軸的截距,即求直線與軸交點(diǎn)的橫坐標(biāo),為此可在方程中令=0,解出值,即為與直線與軸的截距。在直角坐標(biāo)系中畫直線時(shí),通常找出直線下兩個(gè)坐標(biāo)軸的交點(diǎn)。6、二元一次方程的每一個(gè)解與坐標(biāo)平面中點(diǎn)的有什么關(guān)系?直線與二元一次方程的解之間有什么關(guān)系?使學(xué)生進(jìn)一步理解二元一次方程與直線的關(guān)系,體會(huì)直解坐標(biāo)系把直線與方程聯(lián)系起來。學(xué)生閱讀教材第105頁,從中獲得對(duì)問題的理解。7、課堂練習(xí)第105練習(xí)第2題和第3(2)鞏固所學(xué)知識(shí)和方法。學(xué)生獨(dú)立完成,教師檢查、評(píng)價(jià)。問題設(shè)計(jì)意圖師生活動(dòng)8、小結(jié)使學(xué)生對(duì)直線方程的理解有一個(gè)整體的認(rèn)識(shí)。(1)請(qǐng)學(xué)生寫出直線方程常見的幾種形式,并說明它們之間的關(guān)系。(2)比較各種直線方程的形式特點(diǎn)和適用范圍。(3)求直線方程應(yīng)具有多少個(gè)條件?(4)學(xué)習(xí)本節(jié)用到了哪些數(shù)學(xué)思想方法?9、布置作業(yè)第106頁習(xí)題3.2第10題和第11題。鞏固課堂上所學(xué)的知

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論