下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
PAGE微專題2不等式恒成立、能成立問題類型1數(shù)形結(jié)合法解決恒成立問題【例1】當(dāng)1≤x≤2時,不等式x2+mx+4<0恒成立,求m的取值范圍.[解]令y=x2+mx+4.∵y<0在[1,2]上恒成立,∴x2+mx+4=0的根一個小于1,另一個大于2.如圖,得eq\b\lc\{\rc\(\a\vs4\al\co1(1+m+4<0,,4+2m+4<0,))即eq\b\lc\{\rc\(\a\vs4\al\co1(m+5<0,,2m+8<0,))解得m<-5.∴m的取值范圍是(-∞,-5).結(jié)合函數(shù)的圖像將問題轉(zhuǎn)化為函數(shù)圖像的對稱軸,區(qū)間端點的函數(shù)值或函數(shù)圖像的位置相對于x軸關(guān)系求解.可結(jié)合相應(yīng)一元二次方程根的分布解決問題.eq\o([跟進(jìn)訓(xùn)練])1.(1)已知不等式kx2+2kx-(k+2)<0恒成立,求實數(shù)k的取值范圍;(2)若不等式-x2+2x+3≤a2-3a對隨意實數(shù)x恒成立,求實數(shù)a[解](1)當(dāng)k=0時,原不等式化為-2<0,明顯符合題意.當(dāng)k≠0時,令y=kx2+2kx-(k+2),∵y<0恒成立,∴其圖像都在x軸的下方,即開口向下,且與x軸無交點.∴eq\b\lc\{\rc\(\a\vs4\al\co1(k<0,,4k2+4kk+2<0,))解得-1<k<0.綜上,實數(shù)k的取值范圍是(-1,0].(2)原不等式可化為x2-2x+a2-3a-3≥∵該不等式對隨意實數(shù)x恒成立,∴Δ≤0,即4-4(a2-3a-3)≤0,即a2-3a-4≥0,解得a≤-1或a∴實數(shù)a的取值范圍是(-∞,-1]∪[4,+∞).類型2分別參數(shù)法解決恒成立問題【例2】設(shè)函數(shù)y=mx2-mx-1,x∈[1,3],若y<-m+5恒成立,求m的取值范圍.[解]y<-m+5恒成立,即m(x2-x+1)-6<0恒成立,∵x2-x+1=eq\b\lc\(\rc\)(\a\vs4\al\co1(x-\f(1,2)))eq\s\up12(2)+eq\f(3,4)>0,又m(x2-x+1)-6<0,∴m<eq\f(6,x2-x+1).∵y=eq\f(6,x2-x+1)=eq\f(6,\b\lc\(\rc\)(\a\vs4\al\co1(x-\f(1,2)))eq\s\up12(2)+\f(3,4))在1≤x≤3上的最小值為eq\f(6,7),∴只需m<eq\f(6,7)即可.∴m的取值范圍為eq\b\lc\(\rc\)(\a\vs4\al\co1(-∞,\f(6,7))).通過分別參數(shù)將不等式恒成立問題轉(zhuǎn)化為求函數(shù)最值問題.eq\o([跟進(jìn)訓(xùn)練])2.已知函數(shù)y=eq\f(x2+2x+a,x)對于隨意x≥1且y>0恒成立,求實數(shù)a的取值范圍.[解]x≥1時,y=eq\f(x2+2x+a,x)>0恒成立,等價于x2+2x+a>0恒成立,即a>-(x2+2x)恒成立,即a>[-(x2+2x)]max.令y1=-(x2+2x),則當(dāng)x≥1時,y1=-(x2+2x)=-(x2+2x+1)+1=-(x+1)2+1≤-3.∴實數(shù)a的取值范圍為{a|a>-3}.類型3轉(zhuǎn)換主元解決恒成立問題【例3】已知a∈[-1,1]時不等式x2+(a-4)x+4-2a>0恒成立,求x[解]把不等式的左端看成關(guān)于a的一次函數(shù),記y=(x-2)a+x2-4x+4,則由y>0對于隨意的a∈[-1,1]恒成立,將a=-1和a=1代入,解不等式組eq\b\lc\{\rc\(\a\vs4\al\co1(x2-5x+6>0,,x2-3x+2>0,))得x<1或x>3.∴x的取值范圍是(-∞,1)∪(3,+∞).轉(zhuǎn)換思維角度,即把變元與參數(shù)變換位置,構(gòu)造以參數(shù)為變量的函數(shù),依據(jù)原變量的取值范圍求解.eq\o([跟進(jìn)訓(xùn)練])3.對于滿意0≤p≤4的一切實數(shù),不等式x2+px>4x+p-3恒成立,試求x的取值范圍.[解]不等式x2+px>4x+p-3恒成立,即(x-1)p+(x2-4x+3)>0,設(shè)y=(x-1)p+(x2-4x+3)是以p為自變量的一次函數(shù),則0≤p≤4時y>0恒成立,即eq\b\lc\{\rc\(\a\vs4\al\co1(x-1·0+x2-4x+3>0,,4x-1+x2-4x+3>0,))解得x>3或x<-1.∴x的取值范圍是{x|x>3或x<-1}.類型4轉(zhuǎn)化為函數(shù)的最值解決能成立問題【例4】若存在x∈R,使得eq\f(4x+m,x2-2x+3)≥2成立,求實數(shù)m的取值范圍.[解]∵x2-2x+3=(x-1)2+2>0,∴4x+m≥2(x2-2x+3)能成立,∴m≥2x2-8x+6能成立,令y=2x2-8x+6=2(x-2)2-2≥-2,∴m≥-2,∴m的取值范圍為[-2,+∞).能成立問題可以轉(zhuǎn)化為m>ymin或m<ymax的形式,求出y的最大值與最小值,從而求得參數(shù)的取值范圍.eq\o([跟進(jìn)訓(xùn)練])4.已知函數(shù)y=|2x+1|-|x|.(1)求不等式y(tǒng)>0的解集;(2)若存在x∈R,使得y≤m成立,求實數(shù)m的取值范圍.[解](1)由y>0,得|2x+1|>|x|,兩邊同時平方,得3x2+4x+1>0,解得x<-1或x>-eq\f(1,3).故原不等式的解集為eq\b\lc\{\rc\}(\a\vs4\al\co1(x\b\lc\|\rc\(\a\vs4\al\co1(x<-1或x>-\f(1,3))))).(2)存在x∈R,使得y≤m成立,故m≥ymin.當(dāng)x<-eq\f(1,2),y=-x-1;當(dāng)-eq\f(1,2)≤x<
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024版微信小程序項目開發(fā)協(xié)議樣本版B版
- 2023-2024年執(zhí)業(yè)藥師之西藥學(xué)綜合知識與技能強(qiáng)化訓(xùn)練試卷A卷(附答案)
- 2023-2024年高校教師資格證之高等教育學(xué)綜合練習(xí)試卷A卷(附答案)
- 2024年度影視作品拍攝免責(zé)聲明合同范本3篇
- 2023-2024年初級經(jīng)濟(jì)師之初級金融專業(yè)??碱A(yù)測題庫
- 2024模具買賣合同范本
- 2024年項目開發(fā)流動資金借款協(xié)議
- 2024版安全監(jiān)控系統(tǒng)綜合施工實施協(xié)議
- 2024版工程設(shè)計委托協(xié)議
- 勞務(wù)派遣人員服務(wù)協(xié)議書
- 2025年行政執(zhí)法人員執(zhí)法資格考試必考題庫及答案(共232題)
- 2025年北京探礦工程研究所招聘高校應(yīng)屆畢業(yè)生歷年管理單位筆試遴選500模擬題附帶答案詳解
- 2025-2030年中國新能源汽車行業(yè)市場分析報告
- 網(wǎng)站建設(shè)合同范本8篇
- 宜賓天原5萬噸氯化法鈦白粉環(huán)評報告
- GB/T 44888-2024政務(wù)服務(wù)大廳智能化建設(shè)指南
- 2024年工廠股權(quán)轉(zhuǎn)讓盡職調(diào)查報告3篇
- 創(chuàng)意寫作與文學(xué)欣賞
- 高空伐樹作業(yè)施工方案
- 新媒體用戶行為研究-洞察分析
- 醫(yī)療器械考試題及答案
評論
0/150
提交評論