版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2023屆福建省福州市平潭縣新世紀學校下學期高三數(shù)學試題綜合測試(二)考試試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.某工廠利用隨機數(shù)表示對生產(chǎn)的600個零件進行抽樣測試,先將600個零件進行編號,編號分別為001,002,……,599,600.從中抽取60個樣本,下圖提供隨機數(shù)表的第4行到第6行:若從表中第6行第6列開始向右讀取數(shù)據(jù),則得到的第6個樣本編號是()A.324 B.522 C.535 D.5782.已知非零向量,滿足,則“”是“”的()A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件解:3.已知復數(shù)滿足(其中為的共軛復數(shù)),則的值為()A.1 B.2 C. D.4.如果實數(shù)滿足條件,那么的最大值為()A. B. C. D.5.已知數(shù)列對任意的有成立,若,則等于()A. B. C. D.6.已知函數(shù),其中,若恒成立,則函數(shù)的單調(diào)遞增區(qū)間為()A. B.C. D.7.達芬奇的經(jīng)典之作《蒙娜麗莎》舉世聞名.如圖,畫中女子神秘的微笑,,數(shù)百年來讓無數(shù)觀賞者人迷.某業(yè)余愛好者對《蒙娜麗莎》的縮小影像作品進行了粗略測繪,將畫中女子的嘴唇近似看作一個圓弧,在嘴角處作圓弧的切線,兩條切線交于點,測得如下數(shù)據(jù):(其中).根據(jù)測量得到的結(jié)果推算:將《蒙娜麗莎》中女子的嘴唇視作的圓弧對應(yīng)的圓心角大約等于()A. B. C. D.8.已知△ABC中,.點P為BC邊上的動點,則的最小值為()A.2 B. C. D.9.小王因上班繁忙,來不及做午飯,所以叫了外賣.假設(shè)小王和外賣小哥都在12:00~12:10之間隨機到達小王所居住的樓下,則小王在樓下等候外賣小哥的時間不超過5分鐘的概率是()A. B. C. D.10.已知雙曲線的左,右焦點分別為,O為坐標原點,P為雙曲線在第一象限上的點,直線PO,分別交雙曲線C的左,右支于另一點,且,則雙曲線的離心率為()A. B.3 C.2 D.11.已知集合,,若,則()A.或 B.或 C.或 D.或12.已知為拋物線的焦點,點在拋物線上,且,過點的動直線與拋物線交于兩點,為坐標原點,拋物線的準線與軸的交點為.給出下列四個命題:①在拋物線上滿足條件的點僅有一個;②若是拋物線準線上一動點,則的最小值為;③無論過點的直線在什么位置,總有;④若點在拋物線準線上的射影為,則三點在同一條直線上.其中所有正確命題的個數(shù)為()A.1 B.2 C.3 D.4二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)的內(nèi)角的對邊分別為,,.若,,,則_____________14.已知三棱錐,,是邊長為4的正三角形,,分別是、的中點,為棱上一動點(點除外),,若異面直線與所成的角為,且,則______.15.等差數(shù)列(公差不為0),其中,,成等比數(shù)列,則這個等比數(shù)列的公比為_____.16.在正方體中,已知點在直線上運動,則下列四個命題中:①三棱錐的體積不變;②;③當為中點時,二面角的余弦值為;④若正方體的棱長為2,則的最小值為;其中說法正確的是____________(寫出所有說法正確的編號)三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列是各項均為正數(shù)的等比數(shù)列,數(shù)列為等差數(shù)列,且,,.(1)求數(shù)列與的通項公式;(2)求數(shù)列的前項和;(3)設(shè)為數(shù)列的前項和,若對于任意,有,求實數(shù)的值.18.(12分)數(shù)列滿足,,其前n項和為,數(shù)列的前n項積為.(1)求和數(shù)列的通項公式;(2)設(shè),求的前n項和,并證明:對任意的正整數(shù)m、k,均有.19.(12分)如圖,在正四棱錐中,底面正方形的對角線交于點且(1)求直線與平面所成角的正弦值;(2)求銳二面角的大?。?0.(12分)已知橢圓的短軸長為,離心率,其右焦點為.(1)求橢圓的方程;(2)過作夾角為的兩條直線分別交橢圓于和,求的取值范圍.21.(12分)已知函數(shù).(1)解不等式;(2)若函數(shù)存在零點,求的求值范圍.22.(10分)2019年春節(jié)期間,某超市準備舉辦一次有獎促銷活動,若顧客一次消費達到400元則可參加一次抽獎活動,超市設(shè)計了兩種抽獎方案.方案一:一個不透明的盒子中裝有30個質(zhì)地均勻且大小相同的小球,其中10個紅球,20個白球,攪拌均勻后,顧客從中隨機抽取一個球,若抽到紅球則顧客獲得60元的返金券,若抽到白球則獲得20元的返金券,且顧客有放回地抽取3次.方案二:一個不透明的盒子中裝有30個質(zhì)地均勻且大小相同的小球,其中10個紅球,20個白球,攪拌均勻后,顧客從中隨機抽取一個球,若抽到紅球則顧客獲得80元的返金券,若抽到白球則未中獎,且顧客有放回地抽取3次.(1)現(xiàn)有兩位顧客均獲得抽獎機會,且都按方案一抽獎,試求這兩位顧客均獲得180元返金券的概率;(2)若某顧客獲得抽獎機會.①試分別計算他選擇兩種抽獎方案最終獲得返金券的數(shù)學期望;②為了吸引顧客消費,讓顧客獲得更多金額的返金券,該超市應(yīng)選擇哪一種抽獎方案進行促銷活動?
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】
因為要對600個零件進行編號,所以編號必須是三位數(shù),因此按要求從第6行第6列開始向右讀取數(shù)據(jù),大于600的,重復出現(xiàn)的舍去,直至得到第六個編號.【詳解】從第6行第6列開始向右讀取數(shù)據(jù),編號內(nèi)的數(shù)據(jù)依次為:,因為535重復出現(xiàn),所以符合要求的數(shù)據(jù)依次為,故第6個數(shù)據(jù)為578.選D.【點睛】本題考查了隨機數(shù)表表的應(yīng)用,正確掌握隨機數(shù)表法的使用方法是解題的關(guān)鍵.2.C【解析】
根據(jù)向量的數(shù)量積運算,由向量的關(guān)系,可得選項.【詳解】,,∴等價于,故選:C.【點睛】本題考查向量的數(shù)量積運算和命題的充分、必要條件,屬于基礎(chǔ)題.3.D【解析】
按照復數(shù)的運算法則先求出,再寫出,進而求出.【詳解】,,.故選:D【點睛】本題考查復數(shù)的四則運算、共軛復數(shù)及復數(shù)的模,考查基本運算能力,屬于基礎(chǔ)題.4.B【解析】
解:當直線過點時,最大,故選B5.B【解析】
觀察已知條件,對進行化簡,運用累加法和裂項法求出結(jié)果.【詳解】已知,則,所以有,,,,兩邊同時相加得,又因為,所以.故選:【點睛】本題考查了求數(shù)列某一項的值,運用了累加法和裂項法,遇到形如時就可以采用裂項法進行求和,需要掌握數(shù)列中的方法,并能熟練運用對應(yīng)方法求解.6.A【解析】
,從而可得,,再解不等式即可.【詳解】由已知,,所以,,由,解得,.故選:A.【點睛】本題考查求正弦型函數(shù)的單調(diào)區(qū)間,涉及到恒成立問題,考查學生轉(zhuǎn)化與化歸的思想,是一道中檔題.7.A【解析】
由已知,設(shè).可得.于是可得,進而得出結(jié)論.【詳解】解:依題意,設(shè).則.,.設(shè)《蒙娜麗莎》中女子的嘴唇視作的圓弧對應(yīng)的圓心角為.則,.故選:A.【點睛】本題考查了直角三角形的邊角關(guān)系、三角函數(shù)的單調(diào)性、切線的性質(zhì),考查了推理能力與計算能力,屬于中檔題.8.D【解析】
以BC的中點為坐標原點,建立直角坐標系,可得,設(shè),運用向量的坐標表示,求得點A的軌跡,進而得到關(guān)于a的二次函數(shù),可得最小值.【詳解】以BC的中點為坐標原點,建立如圖的直角坐標系,可得,設(shè),由,可得,即,則,當時,的最小值為.故選D.【點睛】本題考查向量數(shù)量積的坐標表示,考查轉(zhuǎn)化思想和二次函數(shù)的值域解法,考查運算能力,屬于中檔題.9.C【解析】
設(shè)出兩人到達小王的時間,根據(jù)題意列出不等式組,利用幾何概型計算公式進行求解即可.【詳解】設(shè)小王和外賣小哥到達小王所居住的樓下的時間分別為,以12:00點為開始算起,則有,在平面直角坐標系內(nèi),如圖所示:圖中陰影部分表示該不等式組的所表示的平面區(qū)域,所以小王在樓下等候外賣小哥的時間不超過5分鐘的概率為:.故選:C【點睛】本題考查了幾何概型中的面積型公式,考查了不等式組表示的平面區(qū)域,考查了數(shù)學運算能力.10.D【解析】
本道題結(jié)合雙曲線的性質(zhì)以及余弦定理,建立關(guān)于a與c的等式,計算離心率,即可.【詳解】結(jié)合題意,繪圖,結(jié)合雙曲線性質(zhì)可以得到PO=MO,而,結(jié)合四邊形對角線平分,可得四邊形為平行四邊形,結(jié)合,故對三角形運用余弦定理,得到,而結(jié)合,可得,,代入上式子中,得到,結(jié)合離心率滿足,即可得出,故選D.【點睛】本道題考查了余弦定理以及雙曲線的性質(zhì),難度偏難.11.B【解析】
因為,所以,所以或.若,則,滿足.若,解得或.若,則,滿足.若,顯然不成立,綜上或,選B.12.C【解析】
①:由拋物線的定義可知,從而可求的坐標;②:做關(guān)于準線的對稱點為,通過分析可知當三點共線時取最小值,由兩點間的距離公式,可求此時最小值;③:設(shè)出直線方程,聯(lián)立直線與拋物線方程,結(jié)合韋達定理,可知焦點坐標的關(guān)系,進而可求,從而可判斷出的關(guān)系;④:計算直線的斜率之差,可得兩直線斜率相等,進而可判斷三點在同一條直線上.【詳解】解:對于①,設(shè),由拋物線的方程得,則,故,所以或,所以滿足條件的點有二個,故①不正確;對于②,不妨設(shè),則關(guān)于準線的對稱點為,故,當且僅當三點共線時等號成立,故②正確;對于③,由題意知,,且的斜率不為0,則設(shè)方程為:,設(shè)與拋物線的交點坐標為,聯(lián)立直線與拋物線的方程為,,整理得,則,所以,則.故的傾斜角互補,所以,故③正確.對于④,由題意知,由③知,則,由,知,即三點在同一條直線上,故④正確.故選:C.【點睛】本題考查了拋物線的定義,考查了直線與拋物線的位置關(guān)系,考查了拋物線的性質(zhì),考查了直線方程,考查了兩點的斜率公式.本題的難點在于第二個命題,結(jié)合初中的“飲馬問題”分析出何時取最小值.二、填空題:本題共4小題,每小題5分,共20分。13.或【解析】試題分析:由,則可運用同角三角函數(shù)的平方關(guān)系:,已知兩邊及其對角,求角.用正弦定理;,則;可得.考點:運用正弦定理解三角形.(注意多解的情況判斷)14.【解析】
取的中點,連接,,取的中點,連接,,,直線與所成的角為,計算,,根據(jù)余弦定理計算得到答案?!驹斀狻咳〉闹悬c,連接,,依題意可得,,所以平面,所以,因為,分別、的中點,所以,因為,所以,所以平面,故,故,故兩兩垂直。取的中點,連接,,,因為,所以直線與所成的角為,設(shè),則,,所以,化簡得,解得,即.故答案為:.【點睛】本題考查了根據(jù)異面直線夾角求長度,意在考查學生的計算能力和空間想象能力.15.4【解析】
根據(jù)等差數(shù)列關(guān)系,用首項和公差表示出,解出首項和公差的關(guān)系,即可得解.【詳解】設(shè)等差數(shù)列的公差為,由題意得:,則整理得,,所以故答案為:4【點睛】此題考查等差數(shù)列基本量的計算,涉及等比中項,考查基本計算能力.16.①②④【解析】
①∵,∴平面
,得出上任意一點到平面的距離相等,所以判斷命題①;②由已知得出點P在面上的射影在上,根據(jù)線面垂直的判定和性質(zhì)或三垂線定理,可判斷命題②;③當為中點時,以點D為坐標原點,建立空間直角系,如下圖所示,運用二面角的空間向量求解方法可求得二面角的余弦值,可判斷命題③;④過作平面交于點,做點關(guān)于面對稱的點,使得點在平面內(nèi),根據(jù)對稱性和兩點之間線段最短,可求得當點在點時,在一條直線上,取得最小值.可判斷命題④.【詳解】①∵,∴平面
,所以上任意一點到平面的距離相等,所以三棱錐的體積不變,所以①正確;
②在直線上運動時,點P在面上的射影在上,所以DP在面上的射影在上,又,所以,所以②正確;③當為中點時,以點D為坐標原點,建立空間直角系,如下圖所示,設(shè)正方體的棱長為2.則:,,所以,設(shè)面的法向量為,則,即,令,則,設(shè)面的法向量為,,即,,由圖示可知,二面角是銳二面角,所以二面角的余弦值為,所以③不正確;④過作平面交于點,做點關(guān)于面對稱的點,使得點在平面內(nèi),則,所以,當點在點時,在一條直線上,取得最小值.因為正方體的棱長為2,所以設(shè)點的坐標為,,,所以,所以,又所以,所以,,,故④正確.
故答案為:①②④.【點睛】本題考查空間里的線線,線面,面面關(guān)系,幾何體的體積,在求解空間里的兩線段的和的最小值,仍可以運用對稱的思想,兩點之間線段最短進行求解,屬于難度題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1),(2)(3)【解析】
(1)假設(shè)公差,公比,根據(jù)等差數(shù)列和等比數(shù)列的通項公式,化簡式子,可得,,然后利用公式法,可得結(jié)果.(2)根據(jù)(1)的結(jié)論,利用錯位相減法求和,可得結(jié)果.(3)計算出,代值計算并化簡,可得結(jié)果.【詳解】解:(1)依題意:,即,解得:所以,(2),,,上面兩式相減,得:則即所以,(3),所以由得,,即【點睛】本題主要考查等差數(shù)列和等比數(shù)列的綜合應(yīng)用,以及利用錯位相減法求和,屬基礎(chǔ)題.18.(1),;(2),證明見解析【解析】
(1)利用已知條件建立等量關(guān)系求出數(shù)列的通項公式.(2)利用裂項相消法求出數(shù)列的和,進一步利用放縮法求出結(jié)論.【詳解】(1),,得是公比為的等比數(shù)列,,,當時,數(shù)列的前項積為,則,兩式相除得,得,又得,;(2),故.【點睛】本題考查的知識要點:數(shù)列的通項公式的求法及應(yīng)用,數(shù)列的前項和的應(yīng)用,裂項相消法在數(shù)列求和中的應(yīng)用,主要考查學生的運算能力和轉(zhuǎn)換能力,屬于中檔題.19.(1);(2).【解析】
(1)以分別為軸,軸,軸,建立空間直角坐標系,設(shè)底面正方形邊長為再求解與平面的法向量,繼而求得直線與平面所成角的正弦值即可.(2)分別求解平面與平面的法向量,再求二面角的余弦值判斷二面角大小即可.【詳解】解:在正四棱錐中,底面正方形的對角線交于點所以平面取的中點的中點所以兩兩垂直,故以點為坐標原點,以分別為軸,軸,軸,建立空間直角坐標系.設(shè)底面正方形邊長為因為所以所以,所以,設(shè)平面的法向量是,因為,,所以,,取則,所以所以,所以直線與平面所成角的正弦值為.設(shè)平面的法向量是,因為,,所以,取則所以,由知平面的法向量是,所以所以,所以銳二面角的大小為.【點睛】本題主要考查了建立平面直角坐標系求解線面夾角以及二面角的問題,屬于中檔題.20.(1);(2).【解析】
(1)由已知短軸長求出,離心率求出關(guān)系,結(jié)合,即可求解;(2)當直線的斜率都存在時,不妨設(shè)直線的方程為,直線與橢圓方程聯(lián)立,利用相交弦長公式求出,斜率為,求出,得到關(guān)于的表達式,根據(jù)表達式的特點用“”判別式法求出范圍,當有一斜率不存在時,另一條斜率為,根據(jù)弦長公式,求出,即可求出結(jié)論.【詳解】(1)由得,又由得,則,故橢圓的方程為.(2)由(1)知,①當直線的斜率都存在時,由對稱性不妨設(shè)直線的方程為,由,,設(shè),則,則,由橢圓對稱性可設(shè)直線的斜率為,則,.令,則,當時,,當時,由得,所以,即,且.②當直線的斜率其中一條不存在時,根據(jù)對稱性不妨設(shè)設(shè)直線的方程為,斜率不存在,則,,此時.若設(shè)的方程為,斜率不存在,則,綜上可知的取值范圍是.【點睛】本題考查橢圓標準方程、直線與橢圓的位置關(guān)系,注意根與系數(shù)關(guān)系、弦長公式、函數(shù)最值、橢圓性質(zhì)的合理應(yīng)用,意在考查邏輯推理、計算求解能力,屬于難題.21.(1)或;(2).【解析】
(1)通過討論的范圍,將絕對值符號去掉,轉(zhuǎn)化為求不等式組的解集,之后取并集,得到原不等式的解集;(2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 制作兒童課件教學課件
- 目送課件底板教學課件
- 蘑菇屋課件教學課件
- 卡通游戲課件教學課件
- 2024年度云計算平臺廣告業(yè)務(wù)合同
- 2024年度八寶山殯儀館鮮花制品物流配送服務(wù)合同
- 2024年度委托加工協(xié)議(定制產(chǎn)品)
- 2024年塑料模具生產(chǎn)與交付合同
- 2024年度健康醫(yī)療服務(wù)合同服務(wù)細節(jié)
- 2024供水供電合同
- 教育新篇章:數(shù)字化轉(zhuǎn)型
- 大學生職業(yè)生涯規(guī)劃嬰幼兒托育服務(wù)與管理
- 附件華紡星海家園二期項目情況匯報已開未竣版
- 23001料倉制作安裝施工工藝標準修改稿
- (完整版)駕駛員違章違規(guī)處罰辦法
- “六項機制”工作實施方案
- 精神病問診過程示例
- [語言類考試復習資料大全]劍橋商務(wù)英語中級真題4
- 教育培訓葉圣陶《稻草人》內(nèi)容簡介心得體會PPT模板
- 中國駕照英文翻譯標準模板
- 四川大學機械制圖習題集第五版答案
評論
0/150
提交評論