版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
廣東省中山紀念中學2024屆高三下學期第一次質量考評數學試題試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.函數(),當時,的值域為,則的范圍為()A. B. C. D.2.設,則關于的方程所表示的曲線是()A.長軸在軸上的橢圓 B.長軸在軸上的橢圓C.實軸在軸上的雙曲線 D.實軸在軸上的雙曲線3.已知定義在R上的偶函數滿足,當時,,函數(),則函數與函數的圖象的所有交點的橫坐標之和為()A.2 B.4 C.5 D.64.已知為虛數單位,若復數滿足,則()A. B. C. D.5.已知焦點為的拋物線的準線與軸交于點,點在拋物線上,則當取得最大值時,直線的方程為()A.或 B.或 C.或 D.6.已知偶函數在區(qū)間內單調遞減,,,,則,,滿足()A. B. C. D.7.設是虛數單位,若復數,則()A. B. C. D.8.如圖,正四面體的體積為,底面積為,是高的中點,過的平面與棱、、分別交于、、,設三棱錐的體積為,截面三角形的面積為,則()A., B.,C., D.,9.數列滿足:,則數列前項的和為A. B. C. D.10.在各項均為正數的等比數列中,若,則()A. B.6 C.4 D.511.已知隨機變量服從正態(tài)分布,且,則()A. B. C. D.12.已知雙曲線的一條漸近線的傾斜角為,且,則該雙曲線的離心率為()A. B. C.2 D.4二、填空題:本題共4小題,每小題5分,共20分。13.已知,在方向上的投影為,則與的夾角為_________.14.若在上單調遞減,則的取值范圍是_______15.已知二項式ax-1x6的展開式中的常數項為-16016.設數列為等差數列,其前項和為,已知,,若對任意都有成立,則的值為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標系中,曲線的參數方程為(為參數),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,直線的極坐標方程為,直線交曲線于兩點,為中點.(1)求曲線的直角坐標方程和點的軌跡的極坐標方程;(2)若,求的值.18.(12分)如圖,在四棱錐中,平面,四邊形為正方形,點為線段上的點,過三點的平面與交于點.將①,②,③中的兩個補充到已知條件中,解答下列問題:(1)求平面將四棱錐分成兩部分的體積比;(2)求直線與平面所成角的正弦值.19.(12分)已知,,且.(1)求的最小值;(2)證明:.20.(12分)在中,角A,B,C的對邊分別是a,b,c,且向量與向量共線.(1)求B;(2)若,,且,求BD的長度.21.(12分)已知函數,的最大值為.求實數b的值;當時,討論函數的單調性;當時,令,是否存在區(qū)間,,使得函數在區(qū)間上的值域為?若存在,求實數k的取值范圍;若不存在,請說明理由.22.(10分)已知函數(1)求函數在處的切線方程(2)設函數,對于任意,恒成立,求的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
首先由,可得的范圍,結合函數的值域和正弦函數的圖像,可求的關于實數的不等式,解不等式即可求得范圍.【詳解】因為,所以,若值域為,所以只需,∴.故選:B【點睛】本題主要考查三角函數的值域,熟悉正弦函數的單調性和特殊角的三角函數值是解題的關鍵,側重考查數學抽象和數學運算的核心素養(yǎng).2、C【解析】
根據條件,方程.即,結合雙曲線的標準方程的特征判斷曲線的類型.【詳解】解:∵k>1,∴1+k>0,k2-1>0,
方程,即,表示實軸在y軸上的雙曲線,
故選C.【點睛】本題考查雙曲線的標準方程的特征,依據條件把已知的曲線方程化為是關鍵.3、B【解析】
由函數的性質可得:的圖像關于直線對稱且關于軸對稱,函數()的圖像也關于對稱,由函數圖像的作法可知兩個圖像有四個交點,且兩兩關于直線對稱,則與的圖像所有交點的橫坐標之和為4得解.【詳解】由偶函數滿足,可得的圖像關于直線對稱且關于軸對稱,函數()的圖像也關于對稱,函數的圖像與函數()的圖像的位置關系如圖所示,可知兩個圖像有四個交點,且兩兩關于直線對稱,則與的圖像所有交點的橫坐標之和為4.故選:B【點睛】本題主要考查了函數的性質,考查了數形結合的思想,掌握函數的性質是解題的關鍵,屬于中檔題.4、A【解析】分析:題設中復數滿足的等式可以化為,利用復數的四則運算可以求出.詳解:由題設有,故,故選A.點睛:本題考查復數的四則運算和復數概念中的共軛復數,屬于基礎題.5、A【解析】
過作與準線垂直,垂足為,利用拋物線的定義可得,要使最大,則應最大,此時與拋物線相切,再用判別式或導數計算即可.【詳解】過作與準線垂直,垂足為,,則當取得最大值時,最大,此時與拋物線相切,易知此時直線的斜率存在,設切線方程為,則.則,則直線的方程為.故選:A.【點睛】本題考查直線與拋物線的位置關系,涉及到拋物線的定義,考查學生轉化與化歸的思想,是一道中檔題.6、D【解析】
首先由函數為偶函數,可得函數在內單調遞增,再由,即可判定大小【詳解】因為偶函數在減,所以在上增,,,,∴.故選:D【點睛】本題考查函數的奇偶性和單調性,不同類型的數比較大小,應找一個中間數,通過它實現大小關系的傳遞,屬于中檔題.7、A【解析】
結合復數的除法運算和模長公式求解即可【詳解】∵復數,∴,,則,故選:A.【點睛】本題考查復數的除法、模長、平方運算,屬于基礎題8、A【解析】
設,取與重合時的情況,計算出以及的值,利用排除法可得出正確選項.【詳解】如圖所示,利用排除法,取與重合時的情況.不妨設,延長到,使得.,,,,則,由余弦定理得,,,又,,當平面平面時,,,排除B、D選項;因為,,此時,,當平面平面時,,,排除C選項.故選:A.【點睛】本題考查平行線分線段成比例定理、余弦定理、勾股定理、三棱錐的體積計算公式、排除法,考查了空間想象能力、推理能力與計算能力,屬于難題.9、A【解析】分析:通過對an﹣an+1=2anan+1變形可知,進而可知,利用裂項相消法求和即可.詳解:∵,∴,又∵=5,∴,即,∴,∴數列前項的和為,故選A.點睛:裂項相消法是最難把握的求和方法之一,其原因是有時很難找到裂項的方向,突破這一難點的方法是根據式子的結構特點,常見的裂項技巧:(1);(2);(3);(4);此外,需注意裂項之后相消的過程中容易出現丟項或多項的問題,導致計算結果錯誤.10、D【解析】
由對數運算法則和等比數列的性質計算.【詳解】由題意.故選:D.【點睛】本題考查等比數列的性質,考查對數的運算法則.掌握等比數列的性質是解題關鍵.11、C【解析】
根據在關于對稱的區(qū)間上概率相等的性質求解.【詳解】,,,.故選:C.【點睛】本題考查正態(tài)分布的應用.掌握正態(tài)曲線的性質是解題基礎.隨機變量服從正態(tài)分布,則.12、A【解析】
由傾斜角的余弦值,求出正切值,即的關系,求出雙曲線的離心率.【詳解】解:設雙曲線的半個焦距為,由題意又,則,,,所以離心率,故選:A.【點睛】本題考查雙曲線的簡單幾何性質,屬于基礎題二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
由向量投影的定義可求得兩向量夾角的余弦值,從而得角的大?。驹斀狻吭诜较蛏系耐队盀椋磰A角為.故答案為:.【點睛】本題考查求向量的夾角,掌握向量投影的定義是解題關鍵.14、【解析】
由題意可得導數在恒成立,解出即可.【詳解】解:由題意,,當時,顯然,符合題意;當時,在恒成立,∴,∴,故答案為:.【點睛】本題主要考查利用導數研究函數的單調性,屬于中檔題.15、2【解析】
在二項展開式的通項公式中,令x的冪指數等于0,求出r的值,即可求得常數項,再根據常數項等于-160求得實數a的值.【詳解】∵二項式(ax-1x)令6-2r=0,求得r=3,可得常數項為-C63故答案為:2.【點睛】本題主要考查二項式定理的應用,二項展開式的通項公式,二項式系數的性質,屬于基礎題.16、【解析】
由已知條件得出關于首項和公差的方程組,解出這兩個量,計算出,利用二次函數的基本性質求出的最大值及其對應的值,即可得解.【詳解】設等差數列的公差為,由,解得,.所以,當時,取得最大值,對任意都有成立,則為數列的最大值,因此,.故答案為:.【點睛】本題考查等差數列前項和最值的計算,一般利用二次函數的基本性質求解,考查計算能力,屬于中等題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1),;(2)或【解析】
(1)根據曲線的參數方程消去參數,可得曲線的直角坐標方程,再由,,可得點的軌跡的極坐標方程;(2)將曲線極坐標方程求,與直線極坐標方程聯立,消去,得到關于的二次方程,由的幾何意義可求出,而(1)可知,然后列方程可求出的值.【詳解】(1)曲線的直角坐標方程為,圓的圓心為,設,所以,則由,即為點軌跡的極坐標方程.(2)曲線的極坐標方程為,將與曲線的極坐標方程聯立得,,設,所以,,由,即,令,上述方程可化為,解得.由,所以,即或.【點睛】此題考查參數方程與普通方程的互化,極坐標方程與直角坐標方程的互化,利用極坐標求點的軌跡方程,考查運算求解能力,考查數形結合思想,屬于中檔題.18、(1);(2).【解析】
若補充②③根據已知可得平面,從而有,結合,可得平面,故有,而,得到,②③成立與①②相同,①③成立,可得,所以任意補充兩個條件,結果都一樣,以①②作為條件分析;(1)設,可得,進而求出梯形的面積,可求出,即可求出結論;(2),以為坐標原點,建立空間坐標系,求出坐標,由(1)得為平面的法向量,根據空間向量的線面角公式即可求解.【詳解】第一種情況:若將①,②作為已知條件,解答如下:(1)設平面為平面.∵,∴平面,而平面平面,∴,又為中點.設,則.在三角形中,,由知平面,∴,∴梯形的面積,,,平面,,,∴,故,.(2)如圖,分別以所在直線為軸建立空間直角坐標系,設,則,由(1)得為平面的一個法向量,因為,所以直線與平面所成角的正弦值為.第二種情況:若將①,③作為已知條件,則由知平面,,又,所以平面,,又,故為中點,即,解答如上不變.第三種情況:若將②,③作為已知條件,由及第二種情況知,又,易知,解答仍如上不變.【點睛】本題考查空間點、線、面位置關系,以及體積、直線與平面所成的角,考查計算求解能力,屬于中檔題.19、(1)(2)證明見解析【解析】
(1)利用基本不等式即可求得最小值;(2)關鍵是配湊系數,進而利用基本不等式得證.【詳解】(1),當且僅當“”時取等號,故的最小值為;(2),當且僅當時取等號,此時.故.【點睛】本題主要考查基本不等式的運用,屬于基礎題.20、(1)(2)【解析】
(1)根據共線得到,利用正弦定理化簡得到答案.(2)根據余弦定理得到,,再利用余弦定理計算得到答案.【詳解】(1)∵與共線,∴.即,∴即,∵,∴,∵,∴.(2),,,在中,由余弦定理得:,∴.則或(舍去).∴,∵∴.在中,由余弦定理得:,∴.【點睛】本題考查了向量共線,正弦定理,余弦定理,意在考查學生的綜合應用能力.21、(1);(2)時,在單調增;時,在單調遞減,在單調遞增;時,同理在單調遞減,在單調遞增;(3)不存在.【解析】分析:(1)利用導數研究函數的單調性,可得當時,取得極大值,也是最大值,由,可得結果;(2)求出,分三種情況討論的范圍,在定義域內,分別令求得的范圍,可得函數增區(qū)間,求得的范圍,可得函數的減區(qū)間;(3)假設存在區(qū)間,使得函數在區(qū)間上的值域是,則,問題轉化為關于的方程在區(qū)間內是否存在兩個不相等的實根,進而可得結果.詳解:(1)由題意得,令,解得,當時,,函數單調遞增;當時,,函數單調遞減.所以當時,取得極大值,也是最大值,所以,解得.(2)的定義域為.①即,則,故在單調增②若,而,故,則當時,;當及時,故在單調遞減,在單調遞增.③若,即,同理在單調遞減,在單調遞增(3)由(1)知,所以,令,則對恒成立,所以在區(qū)間內單調遞增,所以恒成立,所以函數在區(qū)間內單調遞增.假設存在區(qū)間,使得函數在區(qū)間上的值域是,則,問題轉化為關于的方程在區(qū)間內是否存在兩個不相等的實根,即方程在區(qū)間內是否存在兩個不相等的實根,令,,則,設,,則對恒成立,所以函數在區(qū)間內單調遞增,故恒成立,所以,所以函數在區(qū)間內單調遞增,所以方程在區(qū)間內不存在兩個不相等的實根.綜上所述,不存在區(qū)間,使得函數在區(qū)間上的值域是.點睛:本題主要考查利用導數判斷函數的單調性以及函數的最值值,屬于難題.求函數極值、最值的步驟:(1)確定函數的定義域;(2)求導數;(3)解方程求出函數定義域內的所有根;(4)列表檢查在的根左右兩側值的符號,如果左正右負(左增右減),那么在處取極大值,如果左負右正(左減右增),那么在處取極小值.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 低碳綜合體物業(yè)招投標要點
- 公共服務租賃合同文本
- 水資源優(yōu)化堰塘整治施工合同
- 旅游簽證市場管理辦法
- 建筑工程融資合同樣式
- 中藥質量保障措施確保療效穩(wěn)定
- 私人政府公務用車租賃合同
- 地面找平泥工施工合同
- 綠化林權買賣協議
- 辦公家具行業(yè)財稅政策
- 部編版二年級語文上冊第9課-黃山奇石課件
- 國開電大 管理概論 形考任務一(畫組織結構圖)
- 七年級數學上冊-找規(guī)律
- DB42T1319-2021綠色建筑設計與工程驗收標準
- 市政給排水管道安裝工程監(jiān)理細則
- 結直腸的鋸齒狀病變及其腫瘤課件
- 《國家安全法》 詳解課件
- 最新鈉冷快堆中的結構材料課件
- 部編版小學語文六年級上冊單元考點總結(全冊)課件
- ??低晝炔颗嘤柦滩?
- 小小銀行家課件講解學習共
評論
0/150
提交評論