




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
本卷自動生成,請仔細校對后使用,答案僅供參考第?PAGE?頁,共?NUMPAGES?頁湖北省武漢市武昌區(qū)南湖中學2021-2022學年八年級(上)月考數(shù)學試卷(二)1.(3分)若一個三角形的兩邊長分別是3和4,則第三邊的長可能是(A.8 B.7 C.2 D.12.(3分)已知一個多邊形的內(nèi)角和為540°,這個多邊形的邊數(shù)是(A.3 B.4 C.5 D.63.(3分)如圖,平移ΔABC得到ΔDEF,若∠DEF=35°,∠ACB=50°A.65° B.75° C.95° D.105°4.(3分)如圖:若ΔABE≌ΔACD,且AB=6,AE=2,則A.2 B.3 C.4 D.65.(3分)如圖,CD平分三角板的∠ACB(其中∠A=30°,∠ACB=90°),則∠A.90° B.100° C.105° D.110°6.(3分)如圖,已知∠1=∠2,則不一定能使ΔABD≌ΔACD的條件是(A.AB=AC B.BD=CD C.7.(3分)如圖,已知∠A=80°,∠B=20°,∠C=40°,則∠BOC等于(?A.95° B.120° C.135° D.140°8.(3分)如圖,一副分別含有30°和45°角的兩個直角三角板,拼成如圖所示,其中∠C=90°,∠B=45°,∠E=30°,則∠BFD的度數(shù)是(????A.10° B.15° C.25° D.30°9.(3分)如圖,AD為ΔABC的中線,AD=3,AC=4,則AB的長的取值范圍是A.4<AB<7 B.2<AB<10 C.10.(3分)如圖,在RtΔABC中,∠ABC=90°,BD是高,E是ΔABC外一點,BE=BA,∠E=∠C,若DE=23A.2725 B.1825 C.362511.(3分)三角形的外角和等于______度.12.(3分)如圖,ΔABC≌ΔDEC,若∠ACB=40°,∠13.(3分)如圖,五邊形ABCDE中,AB//CD,∠1,∠2,∠3是五邊形的外角,則∠1+∠2+∠3等于______.
14.(3分)如圖,∠AOB=90°,OA=OB,直線l經(jīng)過點O,分別過點A、B作AC⊥l于C,BD⊥l于D.已知AC=715.(3分)如圖,在RtΔABC中,∠BAC=90°,AB=6,AD是ΔABC的角平分線,DE⊥AB于點16.(3分)如圖,在RtΔABC中,∠ACB=90°,AC=BC,點D在線段AB上,以CD為斜邊,作等腰直角ΔCDE(點C、D、E按逆時針排列),若點F在EC的延長線上,以點A、C、17.(8分)已知等腰三角形的兩邊長為5cm和2cm,求它的周長.18.(8分)已知:如圖,E是BC上一點,AB=EC,AB//CD,BC=CD.19.(8分)如圖,五邊形ABCDE中,AE//BC,EF平分∠AED,CF平分∠BCD,若∠EDC=80°,求20.(8分)如圖,點C、D在∠AOB的平分線上,DM⊥AC于點M,DN⊥BC于點N,21.(8分)如圖,BD平分∠MBN,A,C分別為BM,BN上的點,且BC>BA,E為BD上的一點,AE=22.(8分)如圖,在ΔABC中,∠ABC=∠ACB,點D、E分別在邊BC、AC上.?
(1)若∠ADE=∠B,求證:∠BAD=∠CDE23.(8分)(1)如圖1,在四邊形ABCD中,AB=AD,∠B=∠ADC=90°,點E、F分別在邊BC、CD上,且EF=BE+DF,探究圖中∠BAE、∠FAD、∠EAF之間的數(shù)量關(guān)系.?
小明探究的方法是:延長FD到點G,使DG=BE,連接AG,先證明ΔABE≌ΔADG,再證明ΔAEF≌ΔAGF,可得出結(jié)論,他的結(jié)論是______.?
(2)如圖2,在四邊形ABCD中,AB=AD,∠B+∠D=180°,點E、F分別在邊BC、CD上,且EF=BE+FD,探究上述結(jié)論是否仍然成立,并說明理由.?
(3)24.(8分)在平面直角坐標系中,A(a,0),B(0,b),且(a+4)2=-(3a+2b)2.?
(1)求點A、B的坐標;?
(2)如圖1,點C在ΔAOB的外角平分線上,CD⊥AB于點D,若點C的縱坐標為3,求BD-AD的值;?
(3)如圖2
答案和解析1.【答案】C【解析】解:設(shè)第三邊長x.?
根據(jù)三角形的三邊關(guān)系,得1<x<7.?
故選:C.?
根據(jù)三角形的三邊關(guān)系求得第三邊的取值范圍解答即可.?
此題主要考查三角形三邊關(guān)系的知識點,此題比較簡單,注意三角形的三邊關(guān)系.
2.【答案】C【解析】解:設(shè)這個多邊形的邊數(shù)是n,?
則(n-2)?180°=540°,?
解得n=5,?
故選:C.?
n邊形的內(nèi)角和公式為(n-2)?180°,由此列方程求n.?
此題主要考查了多邊形外角與內(nèi)角,此題比較簡單,只要結(jié)合多邊形的內(nèi)角和公式來尋求等量關(guān)系,構(gòu)建方程即可求解.
3.【答案】C【解析】解:∵平移ΔABC得到ΔDEF,∠DEF=35°,?
∴∠B=∠DEF=35°,?
∵∠ACB=50°,?
∴∠A=180°-∠B-∠ACB4.【答案】C【解析】解:∵ΔABE≌ΔACF,?
∴AC=AB5.【答案】C【解析】解:∵CD平分三角板的∠ACB,?
∠ACD=12∠ACB=45°.?
∴∠ADC=180°-∠A-∠ACD6.【答案】B【解析】?
此題主要考查學生對全等三角形判定定理的理解和掌握,此題難度不大,屬于基礎(chǔ)題.利用全等三角形判定定理ASA,SAS,AAS對各個選項逐一分析即可得出答案.?
解:A.∵∠1=∠2,AD為公共邊,若AB=AC,則ΔABD≌ΔACD(SAS);故A不符合題意;?
B.∵∠1=∠2,AD為公共邊,若BD=CD,不符合全等三角形判定定理,不能判定ΔABD≌ΔACD;故B符合題意;?
C.∵∠1=∠2,AD為公共邊,若∠B=∠C,則ΔABD≌Δ7.【答案】D【解析】解:連接BC,延長BO交AC于E,?
∵∠A=80°,∠ABO=20°,?
∴∠1=80°+20°=100°,?
∵∠ACO=40°,?
∴∠BOC=∠1+∠ACO=100°+40°=140°.?
故選:D.?
連接BC,延長BO交AC于8.【答案】B【解析】?
這道題主要考查了三角形的外角的性質(zhì),關(guān)鍵是掌握三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和.?
根據(jù)直角三角形的性質(zhì)可得∠BAC=45°,根據(jù)鄰補角互補可得∠EAF=135°,然后再利用三角形的外角的性質(zhì)可得∠AFD=135°+30°=165°,即可求出結(jié)果.?
解:∵∠B=45°,?
∴∠BAC=45°,?
∴∠9.【答案】B【解析】解:延長AD至點E,使DE=AD,連接BE,?
在ΔBDE與ΔCDA中,?
BD=CD∠BDE=∠CDAAD=ED,?
∴ΔBDE≌ΔCDA(SAS)10.【答案】C【解析】解:∵∠ABD=∠C=∠E,,AB=BE,?
在BD上截取BF=DE,?
在ΔABF與ΔBED中,?
AB=BE∠ABD=∠EBF=DE,?
∴ΔABF≌ΔBED(SAS),?
∴SΔBDE=S11.【答案】360【解析】解:三角形的外角和等于360°.?
故答案是:360.?
根據(jù)任何多邊形的外角和是360度即可求解.?
該題考查了多邊形的外角和,正確記憶定理是關(guān)鍵.
12.【答案】60°【解析】解:∵ΔABC≌ΔDEC,?
∴∠DCE=∠ACB=40°,?
∵∠ACE13.【答案】180°【解析】解:∵AB//CD,?
∴∠B+∠C=180°,?
∴∠4+∠5=180°,?
根據(jù)多邊形的外角和定理,∠1+∠2+∠3+∠4+∠5=360°,?
∴∠1+∠2+∠3=360°-180°=180°.?
故答案為:180°.?
根據(jù)兩直線平行,同旁內(nèi)角互補求出∠B+∠C=180°,從而得到以點B、點C為頂點的五邊形的兩個外角的度數(shù)之和等于180°,再根據(jù)多邊形的外角和定理列式計算即可得解.?
該題考查了平行線的性質(zhì),多邊形的外角和定理,是基礎(chǔ)題,理清求解思路是解答該題的關(guān)鍵.
14.【答案】3【解析】解:∵∠AOB=90°,?
∴∠AOC+∠BOD=90°,?
∵AC⊥l,BD⊥l,?
∴∠ACO=∠BDO=90°,?
∴∠A+∠AOC=90°,?
∴∠A=∠BOD,?
在ΔAOC和ΔOBD中,?
∠A=∠BOD∠ACO=∠BDOOA15.【答案】8【解析】解:設(shè)AC=x,?
過D作DF⊥AC于F,?
則DF=DE=247.?
∵SΔABD+SΔACD=SΔABC,?
∴1216.【答案】67.5°或90°【解析】解:分兩種情況:?
①如圖1,取AB的中點O,當D在線段AO上時,點E在ΔABC內(nèi)部,?
可知ΔACF與ΔACD不可能全等;?
②當點D在線段OB上,點E在ΔABC外部,?
i)當ΔACF≌ΔACD時,如圖2,∠ACF=∠ACD,?
又∠DCE=45°,?
∴∠ACD=180°-45°2=67.5°;?
ii)當點D與B重合時,如圖3,ΔACF≌ΔCAD,?
此時∠ACD=90°;?
綜上,∠ACD的度數(shù)為67.5°或90°.?
故答案為:67.5°或90°.?
分兩種情況:取AB的中點O,當17.【答案】解:等腰三角形的兩邊長分別為2cm和5cm,?
當腰長是5cm時,則三角形的三邊是5cm,5cm,2cm,5+2>5,滿足三角形的三邊關(guān)系,三角形的周長是5+5+2=12(cm);?
當腰長是2cm時,三角形的三邊是2cm,2cm,5cm,2+2<5,不滿足三角形的三邊關(guān)系.?
綜上,三角形的周長為12cm.【解析】?
根據(jù)等腰三角形的性質(zhì),本題要分情況討論.當腰長為2cm或是腰長為5cm兩種情況.?
此題主要考查了等腰三角形的性質(zhì)和三角形的三邊關(guān)系;已知沒有明確腰和底邊的題目一定要想到兩種情況,進行分類討論,還應(yīng)驗證各種情況是否能構(gòu)成三角形進行解答,這點非常重要,也是解答該題的關(guān)鍵.
18.【答案】證明:∵AB∥CD,?
∴∠B=∠DCE.?
在△ABC和△ECD中,?
AB=【解析】?
根據(jù)兩直線平行,內(nèi)錯角相等可得∠B=∠ECD,然后利用“邊角邊”證明ΔABC和ΔECD全等,再根據(jù)全等三角形對應(yīng)邊相等即可得證.?
該題考查了三角形全等的判定與性質(zhì),平行線的性質(zhì),比較簡單,求出19.【答案】解:∵EF平分∠AED,CF平分∠BCD,?
設(shè)∠AEF=∠DEF=α,∠BCF=∠DCF=β,?
∵AE∥BC,?
∴∠A+∠B=180°.?
∵五邊形的內(nèi)角和為540°,?
∴∠AED+∠D+∠BCD=540°-180°=360°,?
即2α+80°+2β=360°,?
∴α+β=140°,?
∵∠EDC=80°,?
∴∠EFC=360°-∠D-(α+β)=360°-80°-140°=140°.【解析】?
根據(jù)已知條件設(shè)∠AEF=∠DEF=α,∠BCF=∠DCF=β,再根據(jù)AE//BC,得出∠A+∠B=180,.再根據(jù)五邊形的內(nèi)角和為540°20.【答案】證明:∵DM⊥AC,DN⊥BC,DM=DN,?
∴CD平分∠ACB,∠ACD=∠BCD,?
∴∠ACO=∠BCO.?
∵OC平分∠AOB,?
∴∠AOC=∠BOC.?
在△AOC與△BOC中,?
∠AOC【解析】?
根據(jù)ASA證明ΔAOC與ΔBOC21.【答案】證明:在BC上截取BF=AB.?
∵BD平分∠MBN,?
∴∠ABE=∠FBE,?
在△ABE和△FBE中,AB=BF∠【解析】?
在BC上截取BF=AB,根據(jù)SAS證明ΔABE≌ΔFBE,得∠BAE=∠BFE22.【答案】(1)證明:∵∠ADC是△ABD的外角,?
∴∠ADC=∠B+∠BAD,?
即:∠ADE+∠CDE=∠B+∠BAD,?
又∵∠ADE=∠B,?
∴∠BAD=∠CDE;?
(2)∵∠ADE=∠AED,∠AED=∠C+∠CDE,?
∴∠ADE=∠C+∠CDE.?
∵∠ADE+∠CDE=∠B+∠BAD,?
∴∠C+∠CDE+∠CDE=∠B+∠BAD,?
又∵∠B=∠C,?
∴∠BAD=2∠CDE,?
∴∠BAD【解析】?
(1)先根據(jù)三角形外角的性質(zhì)得出∠ADC=∠B+∠BAD,再根據(jù)∠ADC=∠ADE+∠CDE,∠ADE=∠B即可得出結(jié)論;?
(2)23.【答案】∠BAE+∠FAD=∠EAF∠EAF=180°-12【解析】解:(1)∠BAE+∠FAD=∠EAF.理由:?
如圖1,延長FD到點G,使DG=BE,連接AG,?
在ΔABE和ΔADG中,?
AB=AD∠B=∠ADG=90°BE=DG,?
∴ΔABE≌ΔADG(SAS),?
∴∠BAE=∠DAG,AE=AG,?
∵EF=BE+DF,DG=BE,?
∴EF=BE+DF=DG+DF=GF,?
∵AF=AF,?
∴ΔAEF≌ΔAGF(SSS),?
∴∠EAF=∠GAF=∠DAG+∠DAF=∠BAE+∠DAF.?
故答案為:∠BAE+∠FAD=∠EAF;?
(2)仍成立,理由:?
如圖2,延長FD到點G,使DG=BE,連接AG,?
∵∠B+∠ADF=180°,∠ADG+∠ADF=180°,?
∴∠B=∠ADG,?
又∵AB=AD,?
∴ΔABE≌ΔADG(SAS),?
∴∠BAE=∠DAG,AE=AG,?
∵EF=BE+FD=DG+FD=GF,AF=AF,?
∴ΔAEF≌ΔAGF(SSS24.【答案】解:(1)由條件,得(a+4)2+(3a+2b)2=0,?
又(a+4)2≥0,(3a+2b)2≥0,?
∴a+4=0,3a+2b=0,?
∴a=-
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- GB/T 45343-2025老年人沐浴鞋
- 汽車維修知識的普及與宣導試題及答案
- 《2025年的青島房屋租賃合同》
- 河南省九師聯(lián)盟2025屆高三4月聯(lián)考歷史試題+答案
- 2025企業(yè)短期貸款借款合同模板
- 2025項目管理咨詢合同協(xié)議范本
- 2025企業(yè)租賃合同范本(版)
- 食品安全檢測工作的流程試題及答案
- 2025建筑工程樓房建設(shè)合同
- 政府購買社區(qū)居家養(yǎng)老服務(wù)招標文件
- 消防更換設(shè)備方案范本
- 合伙開辦教育培訓機構(gòu)合同范本
- 嵌入式機器視覺流水線分揀系統(tǒng)設(shè)計
- GB/T 14689-2008技術(shù)制圖圖紙幅面和格式
- 2.1食物中的營養(yǎng)物質(zhì) 導學案(1、2課時無解析)
- JC∕T 2634-2021 水泥行業(yè)綠色工廠評價要求
- 六年級下冊科學第二單元質(zhì)量檢測卷粵教版(含答案)
- 跨境電商現(xiàn)狀與發(fā)展趨勢跨境電商行業(yè)分析跨境電商的發(fā)展課件
- 唐太宗-李世民
- 項目部二級安全教育內(nèi)容
- 統(tǒng)編(部編)五年級語文下冊全冊教學反思
評論
0/150
提交評論